UTTARA UNNATI-2

MATHEMATICS

HANDBOOK OF PRACTICE PAPERS

PREPARED FOR THE QUALITATIVE

IMPROVEMENT OF SSLC EXAM-2024 RESULTS

ENGLISH MEDIUM ALONG WTIH MODELANSWERS

OFFICE OF THE

DEPUTY DIRECTOR OF PUBLIC INSTRUCTION

ి్రిల చొంతరాజు むి ఎమో భా.ఆ.సై

 ఎనో చరియ山్ట్ర రే్తి బసతంచరి బింగఆకృరు నగగర జిల్లా జంజాయతలో బింగళృృరు

:: అభినందనా నుळి ::

01.01.2024

బొంగళృరు

లుఱ゙నిదేలశశచరు（ఆడతిత）

లుజనిదిల్యచేరు（ఆడళిత）రపర ఈఔలర లలలా లిచ్షణ ఇలాఖ బింగఆృతు లుత్తర జిల్ల

బింగఆృృరు－ 560009
దూంరదాణి సంబ్యె－ 08022215312
ఇమిలలా దిఖాప్స－
ddpinorth＠gmail．com

సందిలす

 అむిఁశ్తెత్తంగా．

01．01．2024
బ゙ంగళอరు

 లాలా తిష్టణ ఇలాఖ
బొంగఆృతు లుత్తర జిల్లె
బొంగگృరు - 560009
డులరమాణి సంఖ్య - 08022215312
ఇముcer విఱాస్ -
ddpinorth@gmail.com

రములలో వి
తిక్షణాధిణారిగిళు \&
జిల్లా ఎహో.ఎహౌ.ఎలా.స నిలఁడలా అధిణారిగఆకు

 ముळత్తరేాగిరుత్తది.

 లలల లిచ్షణ ఇలాఖ బింగళృరు లుత్తర జిల్ల బింగెళృరరు－ 560009

దుంరదాణి స్సంఖ్య－ 08022215312 ఇమెలలా ఎిఱాప్－
ddpinorth＠gmail．com

む゙○きజ ひి えे
లిచ్షణరధిచరర

01．01．2024

బెంగళอరు
※๐きఙ జి～
కిశ్షణాధిచార

రాజులింగిగగౌడ ఎం.జి ఎిజయు జరిఎిక్షచ్రు

กణิธ

 లలలా తిప్షణ ఇలాజ బెంగళృరు లుక్తర జేల్ల
బૂంగళృరు - 560009
జృరషాణి సంబ్యె - 08022215312 ఇముఁలో విఱాస్ -
ddpinorth@gmail.com

ేృజిణియు చురితు

 అనుపలలచరమాగిడే.

 నిఁడలు ఆనందబినిసుత్తడా.

ఎందనేగళాอందిగి,
01.01.2024

బ่ంగยృอు

MATHEMATICS RESOURCE TEAM

VENKAT VAIDYA L KPS BAGALUR BANGALORE NORTH - 4	ARUN S PRINCIPAL BHARAT VIDYANIKETAN SCHOOL K.P WEST, NORTH -2
LAKSHMI SINGH B MANASA EDUCATION TRUST, R.T NAGAR, NORTH-2	SHARATH KUMAR B S LECTURER YASHAS PU COLLEGE, CHIKKABANAVARA, NORTH - 4
IMRAN PASHA HEAD MASTER, HUDA NATIONAL SCHOOL, KAVALBYRASANDRA, NORTH-3	P HEMALATHA UAS CAMPUS SCHOOL, HEBBAL, NORTH-3
V I BHARGAVI CARMEL HIGH SCHOOL BASAVESHWARANAGAR, NORTH-1	FIRDOS BEGUM PESHIMAM HUDA NATIONAL SCHOOL, NORTH-4
S P RANGESH RAJA RAJESHWARI ENGLISH SCHOOL YESHWANTAPUR, NORTH - 2	SHAMA TAJ RTNET HIGH SCHOOL KANAKA NAGAR, NORTH-2

"Without mathematics, there's nothing you can do. Everything around you is mathematics. Everything around you is numbers"

- Shakuntala Devi

OFFICE OF THE DDPI, DEPARTMENT OF PUBLIC INSTRUCTION,

 BANGALORE NORTH DISTRICTSSLC EXAM 2024, MODEL QUESTION PAPER SET - 01
Subject: Mathematics
Max Marks: 80 Time: 3.15 Hrs. Code: 81 E No. Of Questions: 38

I. Four alternatives are given for each of the following questions / incomplete statements. Only one of them is correct or most appropriate. Choose the correct alternative and write the complete answer along with its letter of alphabet.
 ```8\times1=8```

1. If the nth term of an arithmetic progression $a_{n, n} n=4 n+5$, then its $5^{\text {th }}$ term is
(A) 20
(B) 14
(C) 25
(D) 24
2. "The product of two consecutive positive integers is 30 ." This can be expressed algebraically as
(A) $x(x+2)=30$
(B) $x(x-2)=30$
(C) $x(x-3)=30$
(D) $x(x+1)=30$
3.In a circle the angle between a radius and a tangent at non-centre end of the radius is
(A) 90°
(B) 180°
(C) 45°
(D) 360°
3. $(7 \times 11 \times 13+13)$ is a/ an
(A) Composite number
(B) Prime number
(C) Irrational number
(D) Imaginary number.
4. The sum of the probabilities of all the elementary events of an experiment is
(A) 0.5
(B) 1
(C) 2
(D) 1.5

6 .The diagonals of a rhombus are 16 cm and 12 cm , in length. The side of the rhombus in length is:
(A) 20 cm
(B) 8 cm
(C) 10 cm
(D) 9 cm
7. If we cut a cone in two parts by a plane parallel to the base, then the bottom part left over is the:
(A) Cone
(B) Frustum of cone
(C) Sphere
(D) Cylinder
8.The midpoint of a line segment joining two points $\mathrm{A}(2,4)$ and $\mathrm{B}(-2,-4)$ is
(A) $(-2,4)$
(B) $(2,-4)$
(C) $(0,0)$
(D) $(-2,-4)$
II. Answer the following questions: $8 \times 1=8$
9. Write the statement of "Basic Proportionality" theorem (Thales theorem).
10. Write the number of zeros of the polynomial $p(x)=x^{3}+2 x^{2}+x+6$.
11. The probability of an event ' E ' is 0.05 , then what is the probability of an event ' $N o t E$ '
12. Find the surface area of a sphere of radius 7 cm
13. Find the distance between the points $\mathrm{A}(2,6)$ and $\mathrm{B}(5,0)$ by using distance formula.
14. If a pair of linear equations represented by lines has no solutions (inconsistent) then write what kinds of lines are these.
15.Express the denominator of $\mathbf{2 3 / 2 0}$ in the form of $2^{\mathrm{n}} \times 5^{\mathrm{m}}$ and state whether the given fraction is terminating or non-terminating repeating decimal.
16. Find the value of the discriminant of the quadratic equation $2 x^{2}-4 x+3=0$.
III. Answer the following questions: $8 \times 2=16$
17. Find the 30th term of the arithmetic progression $5,8,11,$. .
18. In $\mathrm{ABC}, \angle \mathrm{ABC}=90^{\circ}, \mathrm{BD} \perp \mathrm{AC}$. If $\mathrm{BD}=8 \mathrm{~cm}, \mathrm{AD}=4 \mathrm{~cm}$, find CD and AB .

19. Solve the given pair of linear equations by Elimination method $2 x+y=8$ and $x-y=1$

OR

Find the value of k, if the pair of linear equations $2 x-3 y=8$ and $2(k-4) x-k y=k+3$ are inconsistent.
20. Prove that $2+\sqrt{\mathbf{5}}$ is an irrational number.

OR

Find the HCF of 24 and 40 by using Euclid's division algorithm.
21. Sum and product of the zeroes of a quadratic polynomial $P(x)=a x^{2}+b x-4$ are $\mathbf{1 / 4}$ and -1 respectively. Then find the values of a and b
22. If $\sin \boldsymbol{\theta}=\mathbf{1 2 / 1 3}$, find the values of $\cos \boldsymbol{\theta}$ and $\tan \boldsymbol{\theta}$
23. Draw a circle of radius 3 cm . Construct a pair of tangents to it, from a point 8 cm away from its center.
24. Two unbiased dice whose faces are numbered 1 to 6 are rolled once. Find the probability of getting a sum equal to 7 on their top faces.
IV. Answer the following questions : $9 \times 3=27$
25. In $\triangle \mathrm{ABC}, \mathrm{AB}=\mathrm{AC}$. P is a point on BC such that $\mathrm{PN} \perp \mathrm{AC}$ and $P M \perp A B$ as shown in the figure. Prove that $M B . C P=N C . B P$

26. The sum of the reciprocals of Rehman's age (in years) 3 years ago and his age 5 years from now is $1 / 3$. Find his present age.

OR

The diagonal of a rectangular field is 60 m more than its shorter side. If the longer side is 30 m more than the shorter side, then find the sides of the field.
27. Prove that $\sec \theta(1-\sin \theta)(\sec \theta+\tan \theta)=1$.

OR

Evaluate $4 \operatorname{Sin} 30+\tan 48 . \tan 42-3 \tan 45$
28. Prove that the lengths of the tangents from an external point are equal.
29. A hand fan is made up of cloth fixed in between the metallic wires. It is in the shape of a sector of a circle of radius 21 cm and of angle 120° as shown in the figure.

Calculate the area of the cloth used and also find the total length of the metallic wire.

30.Find the mean of the following data

C.I	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
frequency	3	5	9	5	3

OR
Calculate the mode for the following frequency distribution table.

Class interval	frequency
$10-25$	2
$25-40$	3
$40-55$	7
$55-70$	6
$70-85$	6
$85-100$	6

31. During the medical check-up of 35 students of a class, their weights were recorded as follows. Draw a less than type of ogive for the given data

Weight (in kg)	Number of students
Less than 38	0
Less than 40	3
Less than 42	5
Less than 44	9
Less than 46	14
Less than 48	28
Less than 50	32
Less than 52	35

32. Show that the triangle whose vertices are $\mathrm{A}(8,-4), \mathrm{B}(9,5)$ and $\mathrm{C}(0,4)$ is an isosceles triangle.

OR

Find the ratio in which the point $\mathrm{P}(2, \mathrm{x})$ divides the line joining the points $\mathrm{A}(-2,2)$ and $\mathrm{B}(3,7)$ internally . Also find the value of x.
33. Construct a triangle with sides $5 \mathrm{~cm}, 6 \mathrm{~cm}$ and 7 cm and then construct another triangle whose sides are $3 / 5$ of the corresponding sides of the given triangle.

V. Answer the following questions: $\mathbf{4 \times 4 = 1 6}$

34. Find the solution of the pair of linear equations by graphical method. $x+y=7 \& 3 x-y=1$
35. If the first term of an AP is 2 and the sum of first five terms is equal to one-fourth of the sum of the next five terms, find the sum of the first 30 terms
36. There is a small island in the middle of a 100 m wide river and a tall tree stands on the island. P and Q are points directly opposite to each other on the two banks, and in line with the tree.If the angle of elevation of top of the tree from Pans Q are 30 and 45 respectively, find the height of the tree.
37. A bucket of height 8 cm and made up of copper sheet is in the form of frustum of right circular cone with radii of it upper and lower ends as 9 cm and 3 cm respectively. calculate
a. the volume of water which can fill the bucket.
b. the area of copper sheet required to make the bucket.

OR

Sand is filled in a cylindrical vessel of height 32 cm and radius of its base is 18 cm . This sand is completely poured on the level ground to form a conical shaped heap of sand. If the height of the conical heap is 24 cm . Find the base radius and slant height of the conical heap.

V. Answer the following questions: $1 \times 5=5$

38. State and prove Pythagoras theorem.

OFFICE OF THE DDPI, DEPARTMENT OF PUBLIC INSTRUCTION,

 BANGALORE NORTH DISTRICT
SSLC EXAM 2024, MODEL QUESTION PAPER SET - 02

Subject: Mathematics
Max Marks: 80 Time: 3.15 Hrs. Code: 81E No. Of Questions: 38
I. Four alternatives are given for each of the following questions / incomplete statements. Only one of them is correct or most appropriate. Choose the correct alternative and write the complete answer along with its letter of alphabet.

```
8\times1=8
```

1. If $a_{n}=n^{2}-2$ then the value of a_{4} is
A) 14
B) 16
C) 18
D) 20
2. If a pair of linear equations are given by $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$, then the condition for the intersecting lines is given by.
A) $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
B) $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
C) $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}$
D) $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
3. ABC and BDE are two equilateral triangles such that D is the mid -point of BC . Ratio of the areas of triangles ABC and BDE is
A) $2: 1$
B) $1: 2$
C) $4: 1$
D) $1: 4$
4. Angle between tangent and radius is always equal to
A) 50°
B) 60°
C) 70°
D) 90°
5. Given $15 \cot \mathrm{~A}=8$ then the value of $\sec \mathrm{A}$ is
A) $\frac{15}{8}$
B) $\frac{8}{15}$
C) $\frac{15}{17}$
D) $\frac{17}{8}$
6. If Median is equal to 26 , mode is equal to 27 then Mean is
A) 25
B) 25.5
C) 26
D)26.5
7. Probability of sure event is
A) 1
B) 0
C) 2
D) 3
8. The Volume of the frustum of cone is given by
A) $\frac{1}{3} \pi h\left(r_{1}{ }^{2}+r_{2}{ }^{2}\right)$
B) $\frac{1}{3} \pi h\left(r^{2}-r_{2}^{2}+r_{1} r_{2}\right)$
C) $\frac{1}{3} \pi h\left(r_{1}{ }^{2}+r_{2}{ }^{2}+r_{1} r_{2}\right)$
D) $\frac{1}{3} \pi h\left(r^{2}-r_{2}^{2}\right)$
II. Solve the following [1X8=8]
9. Show that $\tan 48^{0} \cdot \tan 23^{0} \cdot \tan 42^{0} \cdot \tan 67^{0}=1$

10 . Find the volume of cube whose one edge is 4 cm
11. State Pythagoras theorem.
12. Express 140 as a product of prime numbers.
13. From a point Q, the length of tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm . Then find the value of Radius of the circle.
14. Find the distance between the origin and a point $(5,12)$.
15. Find the discriminant of the quadratic equation $x^{2}+6 x+5=0$ and hence find the nature of the roots.
16. Find the quadratic polynomial whose sum and product is $1 / 4$ and -1 respectively
III. Solve the following
[2X8=16]
17. Find the sum of the given AP $7+10.5+14+\ldots$ \qquad +84
18. Solve the pair of linear equations by elimination method $2 x+y=6$ and $x-y=3$
19. Prove that $2-3 \sqrt{3}$ is irrational.
20. Draw a circle of radius 6 cm . From a point 10 cm away from its centre, construct the pair of tangents to the circle and measure the lengths.
21. Find the distance between the two points $(-3,3)$ and $(-4,4)$.
22. Find the coordinates of the point which divides the line joining of $(-1,7)$ and $(4,-3)$ in the ratio $3: 4$.
23.Solve the given quadratic equation by formula method $3 x^{2}-5 x+2=0$.
24. A box contains 90 discs which are numbered from 1 to 90 . If one disc is drawn at random from the box, find the probability that it bears
(i) a two-digit number
(ii) a perfect square number
(iii) a number divisible by 5 .

IV. Solve the following: [3X9=27]

25 . During the medical check-up of 35 students of a class, their weights were recorded as follow

(in KG)	Number of students
Less than 38	0
Less than 40	3
Less than 42	5
Less than 44	9
Less than 46	14
Less than 48	28
Less than 50	32
Less than 52	35

Draw a less than type Ogive for the given data.
26. Construct a triangle with sides $5 \mathrm{~cm}, 6 \mathrm{~cm}$ and 7 cm and then another triangle whose sides are $\frac{7}{5}$ of the corresponding sides of the first triangle.
27. Find the median for the given data

Class Interval	$40-45$	$45-50$	$50-55$	$55-60$	$60-65$	$65-70$	$70-75$
Frequency	2	3	8	6	6	3	2

28. Prove that " The lengths of tangents drawn from an external point to a circle are equal".
29. Calculate the area of the designed region in the given figure common between the two quadrants of circles of radius 8 cm each

30. Prove that $-\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\sec \theta \cdot \operatorname{cosec} \theta$

'OR'

Prove that $-(\sin \mathrm{A}+\operatorname{cosec} \mathrm{A})^{2}+(\cos \mathrm{A}+\sec \mathrm{A})^{2}=7+\tan ^{2} \mathrm{~A}+\cot ^{2} \mathrm{~A}$
31. Obtain all other zeroes of $3 \times 4+6 \times 3-2 \times 2-10 x-5$, if two of its zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$
32. A train travels a distance of 480 km at a uniform speed. If the speed had been $8 \mathrm{~km} / \mathrm{h}$ less then it would have taken 3 hours more to cover the same distance. Find the speed of the train.
33.The sum of the $4^{\text {th }}$ and $8^{\text {th }}$ terms of an AP is 24 and the sum of the $6^{\text {th }}$ and $10^{\text {th }}$ terms is 44 . Find the first three terms of the AP

V. Solve the following : [4X4=16]

34. A container opened from the top and made up of a metal sheet, is in the form of a frustum of a cone of height 16 cm with radii of is lower and upper ends as 8 cm and 20 cm , respectively. Find the cost of the milk which can completely fill the container, at the rate of Rs 20per litre. Also find the cost of metal sheet used to make the container, if it costs Rs 8 per $100 \mathrm{~cm}^{2}$

'OR'

A wooden article was made by scooping out a hemisphere from each end of a solid cylinder, If the height of the cylinder is 10 cm , and its base is of radius 3.5 cm , find the total surface area of the article.

35. Solve the given pair of equations graphically $2 x+y=6$ and $4 x-2 y-4=0$
36. 200 logs are stacked In the following manner. 20 logs in the bottom row, 19 in the next row, 18 in the row next to it and so on (see the fig. given below). In how many rows are the 200 logs placed and how many logs are In the top row?

'OR'

A spiral is made up of successive semicircles, with centres alternately at A and B, starting with centre at A, of radii $0.5 \mathrm{~cm} .1 .0 \mathrm{~cm} .1 .5 \mathrm{~cm}, 2.0 \mathrm{~cm}$ as shows In fig. What Is the total length of such a spiral made up of thirteen consecutive semicircles? (Take $\pi=227$)

37. A 1.2 m tall girl spots a balloon moving with the wind in a horizontal line at a height of 88.2 m from the ground. The angle of elevation of the balloon from the eyes of the girl at any instant is 60°. After some time, the angle of elevation reduces to 30°. Find the distance travelled by the balloon during the interval.

VI. Solve the following : [1X5=5]

38. State and Prove Thales Theorem.

OFFICE OF THE DDPI, DEPARTMENT OF PUBLIC INSTRUCTION,

 BANGALORE NORTH DISTRICT
SSLC EXAM 2024, MODEL QUESTION PAPER SET - 3

Subject: Mathematics
Max Marks: $80 \quad$ Time: 3.15 Hrs. Code: 81 E No. Of Questions: 38

I. Four alternatives are given for each of the following questions / incomplete statements. Only one of them is correct or most appropriate. Choose the correct alternative and write the complete answer along with its letter of alphabet.
 $$
8 \times 1=8
$$

1. $15^{\text {th }}$ term of the A.P $x-7, x-2, x+3$ \qquad is
(A) $x+73$
(B) $x+63$
(C) $x+83$
(D) $x+53$
2. In the following figure, $\angle \mathrm{ABC}=90^{\circ}$ and $\mathrm{BD} \perp \mathrm{AC}$. If $\mathrm{BD}=8 \mathrm{~cm}, \mathrm{AD}=4 \mathrm{~cm}$, then the length of CD is
(A) 4 cm
(B) 8 cm
(C) 16 cm
(D) 10 cm
3. The distance of the point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ from the origin is \qquad

(A) $\sqrt{x^{2}+y^{2}}$
(B) $x^{2}+y^{2}$
(C) $x^{2}-y^{2}$
(D) $\sqrt{x^{2}-y^{2}}$
4. If a and b are any two positive integers, then $\operatorname{HCF}(a, b) \times \operatorname{LCM}(a, b)$ is equal to
(A) $a+b$
(B) $a-b$
(C) $a \times b$
(D) $a \div b$
5. If the polynomial $p(x)=x^{2}-x+1$ is divided by $(x-2)$ then the remainder is \qquad
(A) 2
(B) 3
(C) 0
(D) 1
6. The sum and product of the roots of the quadratic equation $4 x^{2}+1=0$ are respectively.
(A) 1 and 4
(B) 0 and 1
(C) 0 and $-1 / 4$
(D) 0 and $1 / 4$
7. Value of $3+\sec ^{2} \boldsymbol{\theta}$ is \qquad
(A) $4+\tan ^{2} \boldsymbol{\theta}$
(B) $4+\cot ^{2} \boldsymbol{\theta}$
(C) $2+\cot ^{2} \boldsymbol{\theta}$
(D) $3+\cot ^{2} \boldsymbol{\theta}$
8. If the circumference of the base of a cylinder is 44 cm and height 20 cm , then its lateral surface area is \qquad
(A) $440 \mathrm{~cm}^{2}$
(B) $880 \mathrm{~cm}^{2}$
(C) $88 \mathrm{~cm}^{2}$
(D) $44 \mathrm{~cm}^{2}$

II. Answer the following questions: $\mathbf{8 x} \mathbf{1 = 8}$

9. Find the $9^{\text {th }}$ term from the end (towards the first term) of the A.P $5,9,13 \ldots . .185$.
10. Find the sum of the first 30 multiples of 4.11. If PS and PT are tangents from an external point P such that $\mathrm{PS}=10 \mathrm{~cm}$ and $\angle \mathrm{SPT}=60^{\circ}$. Find the length of chord ST.

11. Find the area of a quadrant of a circle whose circumference is 22 cm .
12. Find the distance of the point $P(2,3)$ from the x-axis.
13. Express 3825 as a product of its prime factors:
14. Two unbiased coins are tossed. What is the probability of getting at most one head?
15. If the area of the surface of sphere is $4 \pi \mathrm{~cm}$. Find the diameter of the sphere.
III. Answer the following questions
16. In the given figure, if $\angle P Q R=\angle P R X$, then find ar $(\triangle P R X):$ ar $(\triangle P Q R)$.

17. On comparing the ratios $a_{1} / a_{2}, b_{1} / b_{2}$, and c_{1} / c_{2}, find out whether the $3 x+2 y=5 ; 2 x-3 y=7$ are consistent, or inconsistent.
18. Draw a pair of tangents to a circle of radius 4.5 cm , which are inclined to each other at an angle of 45°.
19. Prove that $3+2 \sqrt{5}$ is irrational

OR

Given that $\operatorname{HCF}(306,657)=9$, find $\operatorname{LCM}(306,657)$.
21. If $(\alpha-\beta), \alpha,(\alpha+\beta)$ are zeroes of the polynomial $p(x)=2 x^{3}-16 x^{2}+15 x-2$, then find the value of α.
22. What is the discriminant of the equation $x^{2}-2 x+3=0$? Also, determine the number of solutions this equation has.

OR

Find the roots of $3 x^{2}-5 x+2=0$ by using the quadratic formula.
23. If $\sin \theta+\cos \theta=\sqrt{ } 2$, then evaluate $\tan \theta+\cot \theta$.
24. A box contains 90 discs which are numbered from 1 to 90 . If one disc is drawn at random from the box, find the probability that it bears
(i) a two-digit number
(ii) a perfect square numbers
IV. Answer the following questions
25. Prove that "The lengths of tangents drawn from an external point to a circle are equal"
26. In figure are shown two arcs PAQ and PBQ. Arc PAQ is a part of circle with centre O and radius OP
while arc PBQ is a semi-circle drawn on PQ as diameter with centre M . If $\mathrm{OP}=\mathrm{PQ}=10 \mathrm{~cm}$ show that area of shaded region is $25(\sqrt{ } 3-\pi / 6) \mathrm{cm}^{2}$

OR

Three semicircles each of diameter 3 cm , a circle of diameter 4.5 cm and a semicircle of radius 4.5 cm are drawn in the given figure. Find the area of the shaded region.

27. Draw a triangle PQR such that $\mathrm{PQ}=5 \mathrm{~cm}, \angle \mathrm{P}=120^{\circ}$ and $\mathrm{PR}=6 \mathrm{~cm}$. Construct another triangle whose sides are $\frac{3}{4}$ times the corresponding sides of $\triangle P Q R$.
28. Find the value of ' K ', for which the points are collinear. $(8,1),(k,-4),(2,-5)$.
29. Thirty women were examined in a hospital by a doctor and the number of heart beats per minute was recorded and summarised as follows. Find the mean heartbeats per minute for these women, choosing a suitable method.

ber of heart beats per te	$65-68$	$68-71$	$71-74$	$74-77$	$77-80$	$80-83$	$83-86$
ber of women	2	4	3	8	7	4	2

OR

The following data gives the information on the observed lifetimes (in hours) of 225 electrical components:

ime (in hours)	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$	$100-120$
uency	10	35	52	61	38	29

Determine the modal lifetimes of the components.
30. If the zeroes of the polynomial $x^{3}-3 x^{2}+x+1$ are $a-b, a, a+b$, then find the value of a and b. OR
If 4 is a zero of the cubic polynomial $x^{3}-3 x^{2}-10 x+24$, find its other two zeroes.
31. Evaluate $\left(1+\tan ^{2} \mathrm{~A} / 1+\cot ^{2} \mathrm{~A}\right)=(1-\tan \mathrm{A} / 1-\cot \mathrm{A})^{2}=\tan ^{2} \mathrm{~A}$

OR

In triangle $A B C$, right angled at B, if $\tan A=\frac{1}{\sqrt{3}}$, find the value of $\sin A \cos C+\cos A \sin C$.
32. A boy standing on a horizontal plane finds a bird flying at a distance of 100 m from him at an elevation of 30°. A girl standing on the roof of 20 m high building, finds the angle of elevation of the same bird to be 45°. Both the boy and the girl are on opposite sides of the bird. Find the distance of the bird from the girls.
33. The following tables give the production yield per hectare of wheat of 100 farms of a village.

Production Yield	$50-55$	$55-60$	$60-65$	$65-70$	$70-75$	$75-80$
Number of farms	2	8	12	24	38	16

Change the distribution to a more than type distribution and draw its ogive.

V. Answer the following questions

$4 \times 4=16$
34. If the ratio of the sum of first n terms of two A.P/s is $(7 n+1):(4 n+27)$, find the ratio of their m th terms.

OR

The sum of four consecutive numbers in an AP is 32 and the ratio of the product of the first and the last term to the product of two middle terms is $7: 15$. Find the numbers
35. Draw the graph of $2 y=4 x-6 ; 2 x=y+3$
36. Obtain all other zeroes of $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$, if two of its zeroes are $\sqrt{ }(5 / 3)$ and $-\sqrt{ }(5 / 3)$.
37. 504 cones, each of diameter 3.5 cm and height 3 cm , are melted and recast into a metallic sphere. Find the diameter of the sphere and hence find its surface area. (Use $\pi=22 / 7$).

VI. Answer the following questions

38. State and prove "Basic Proportionality Theorem"

OFFICE OF THE DDPI, DEPARTMENT OF PUBLIC INSTRUCTION, BANGALORE NORTH DISTRICT
 SSLC EXAM 2024, MODEL QUESTION PAPER SET - 4

 Subject: Mathematics

 Subject: Mathematics}

Max Marks: $80 \quad$ Time: 3.15 Hrs. Code: 81 E No. Of Questions: 38
I. Four alternatives are given for each of the following questions / incomplete statements. Only one of them is correct or most appropriate. Choose the correct alternative and write the complete answer along with its letter of alphabet.

$$
8 \times 1=8
$$

1. The HCF and the LCM of $12,21,15$ respectively are
a. 3,140
b. 12,420
c. 3,420
d. 420,3
2. If the common difference of an $A P$ is 5 , then What is $a_{18}-a_{13}$?
a. 5
b. 20
c. 25
d. 30
3. In the given figure, $\mathrm{DE} \| \mathrm{BC}$, the value of EC is
a. $\quad 1.5 \mathrm{~cm}$
b. 3 cm
c. 2 cm
d. 1 cm

4. If the sum of the zeroes of the polynomial $f(x)=2 x^{3}-3 k x^{2}+4 x-5$ is 6 , then the value of k is
a. 2
b. -2
c. 4
d. -4
5. The Empirical relationship between Mean, Mode \& Median is
a. \quad Mode $=3$ median -2 mean
b. Median $=2$ mode +3 median
b. 2 mean $=3$ mode -2 median d. none of the above
6. Volume of a frustum of a cone is
a. $\pi l\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right)$
b. $\pi l\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right)+\pi\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right)$
c. $1 / 3 \pi h\left(\mathrm{r}_{1}{ }^{2}+\mathrm{r}_{2}{ }^{2}+\mathrm{r}_{1} \mathrm{r}_{2}\right)$
d. $4 / 3 \pi r^{3}$
7. In the adjoining figure, if $\angle \mathrm{AOP}=60^{\circ}$ then, $\angle \mathrm{APO}=$?
a. 120^{0}
b. 90°
c. 60^{0}
d. 30^{0}

8. The value of $9 \sec ^{2} \mathrm{~A}-9 \tan ^{2} \mathrm{~A}$ is
a. 0
b. 1
c. 8
d. 9

II Answer the following

9. If the angle formed at the center at the centre of a circle with radius ' r ' is 90°, what is the area of the sector?
10. State Euclid's division algorithm.
11. If the zero of the polynomial $x^{2}+k x+k$ is -2 , then find the value of ' k '?
12. State converse of Pythagoras theorem.
13. If $\sqrt{3} \cot A=1$ then find the value of acute angle A ?
14. Find the value of ' x ' in the following figure. [Angle $C=45^{\circ}$]

15. Check whether it is consistent or inconsistent $5 x^{2}-3 x+1=0$
16. Find the sum of all 11 terms of an A P whose middle term is 30 ?

III Answer the following? $8 \times 2=16$
17. Write whether rational number $7 / 75$ will have terminating decimal expression or a nonterminating decimal?
18. Solve: $2 x-y=2$
$x+3 y=15$ by substitution method.
19. Find the roots of the quadratic equation $6 x^{2}-x-2=0$
20. A die thrown once, what is the probability of getting an even prime number?
21. Find the distance between the points $(0,5)$ and $(-5,0)$
22. A ladder 25 m long just reached the top of a building 24 m high from the ground. What is the distance of the foot of ladder from the base of the building?

OR

In figure $\angle D=\angle E$ and $A D / D B=A E / E C$, Prove that $\triangle B A C$ is an isosceles triangle.

23. Draw a line segment of 7 cm and divide it in the ratio 3: 5 by geometrical constructions.
24. Prove that $\frac{\sin \mathrm{A}-2 \sin ^{3} \mathrm{~A}}{2 \cos ^{3} \mathrm{~A}-\cos \mathrm{A}}=\tan \mathrm{A}$

OR

Evaluate: $\underline{3 \tan ^{2} 30^{\circ}+\tan ^{2} 60^{\circ}+\operatorname{cosec} 30^{\circ}-\tan 45^{\circ}}$

$$
\operatorname{Cot}^{2} 45^{0}
$$

IV Answer the following:

$$
9 \times 3=27
$$

25. A fraction becomes $1 / 3$ when 2 is subtracted from the numerator and it becomes $1 / 2$ when 1 is subtracted from the denominator. Find the fraction?

OR

In the figure, ABCDE is a pentagon with $\mathrm{BE} \| \mathrm{CD} . \mathrm{BC}$ is perpendicular to $\mathrm{CD} . \mathrm{AB}=5 \mathrm{~cm}, \mathrm{AE}=5 \mathrm{~cm}$, $B E=7 \mathrm{~cm}, B C=x-y$ and $C D=x+y$. If the perimeter of $A B C D E$ is 27 cm . Find the value of x and y, given $\mathrm{x}, \mathrm{y} \neq 0$

26. Find the zeroes of the quadratic polynomial $5 x^{2}+8 x-4$ and verify the relationship between the zeroes and the co-efficient of the polynomial.
27. Find the roots of the equation $2 x^{2}+x-4=0$ by the method of completing the square

OR

The ages of two students A and B are 19 years and 15 years respectively. Find how many years it will take so that the product of their ages becomes equal to 480 .
28. Find the co-ordinates of the points which divide the line segment joining the points (5,7) and (8 , 10) in 3 equal parts.

OR

Find the area of a triangle whose vertices are $(-5,-1)(3,-5)$ and $(5,2)$
29. Prove that "the length of tangents drawn from an external point to a circle are equal".
30. If a chord of circle of radius 10 cm subtend an angle of 60° at the center of the circle. Find the area of the corresponding segment of the circle. (Take $\pi=3.14, \mathrm{~V} 3=1.7$)

OR
Find the area of the shaded region where ABCD is a square of side 10 cms and semicircle are drawn with each side of square as diameter.

31. Calculate the mode for the following frequency distribution.

C-I	F
$15-20$	3
$20-25$	8
$25-30$	9
$30-35$	10
$35-40$	3
$40-45$	2

32. Change the following distribution to a less than type distribution and draw its ogive.

C I	F
$0-10$	2
$10-20$	12
$20-40$	2
$30-40$	4
$40-50$	3

33. Draw a circle of radius 2 cm with center ' o ' and take a point P outside the circle such that $\mathrm{OP}=6.5$ cm . From P draw two tangents to the circle.

V Answer the following questions:

34. Solve the given linear equation graphically:

$$
2 x-y=2 ; \quad 4 x-y=4
$$

35. The first term of an A P is 3 , the last term is 83 and the sum of all its terms is 903 . Find the number of terms and the common difference of the AP?

OR

The $13^{\text {th }}$ term of an AP is four times its 3 rd term. If the fifth term is 16 , then find the sum of its first ten terms?
36. The horizontal distance between two poles is 15 m . The angle of depression of the top of first pole as seen from the top pf second pole is 30°. If the height of the first of the pole is 24 m . Find the height of the second pole. [use $\sqrt{ } 3=1.732$]
37. Prove that "Area of similar triangles are proportional to the squares on the corresponding sides".

VI. Answer the following:

$$
5 \times 1=5
$$

38. A right triangle whose sides are 15 cm is made to revolve about its hypotenuse. Find the volume and the surface area of the double cone so formed. [use $\pi=3.14$].

OFFICE OF THE DDPI, DEPARTMENT OF PUBLIC INSTRUCTION,

 BANGALORE NORTH DISTRICTSSLC EXAM 2024, MODEL QUESTION PAPER SET - 5
Subject: Mathematics
Max Marks: $80 \quad$ Time: 3.15 Hrs. Code: 81E No. Of Questions: 38
I. Four alternatives are given for each of the following questions / incomplete statements. Only one of them is correct or most appropriate. Choose the correct alternative and write the complete answer along with its letter of alphabet.

$$
8 \times 1=8
$$

1.If the nth term of an arithmetic progression is $3 n+2$ then the common difference is
(A) 2
(B) 5
(C) 3
(D) 8
2. A number is divided by 23 given 27 quotient 4 as remainder is
(A) 624
(B) 625
(C) 626
(D) 627
3. Formula to find the curved surface area of a sphere is
(A) πr^{1}
(B) $4 \pi r^{2}$
(C) $3 \pi r^{3}$
(D) $2 \pi r^{2}$
4. The value of $\cos \left(90^{\circ}-30^{\circ}\right)$ is
(A)-1
(B) $1 / 2$
(C) 0
(D) 1
5.The graphical representation of $2 x+3 y-9=0$ and $4 x+6 y-18=0$
(A) intersecting line
(B) perpendicular lines
(C) parallel line.
(D) coincident line
6. When 2 unbiased coins are tossed at a time, the probability of getting 2 heads is
(A) $1 / 4$
(B) $1 / 2$
(C) 1
(D) 0
7. The maximum number of tangents that can be drawn to a circle from an external point is
(A) 1
(B) 3
(C) 2
(D) 4
8. The zeroes of $x^{2}-2 x-8$
(A) $(2,-4)$
(B) $(4-2)$
(C) $(-2,-2)$
(D) $(-4,-4)$

II Answer the following questions: $8 \times 1=8$

9. State Converse Thales theorem.
10. write the discriminant of $x^{2}+2 x-3=0$
11.Find the coordinates of the midpoint of the line segments joint the $(6,2)$ and $(4,4)$
11. find the value of $\sin 30^{\circ}+\cos 60^{\circ}$
12. Find the area of the circle with Radius 5 cm
13. Write the formula to find the volume of the frustum of a cone.
15.In Euclid's division lemma, if $a=3 q+r$ then write all possible values of r.
16.find the mean of the data: $4,10,5,9,12$ is
III. Answer the following question: $\mathbf{8 \times 2 = 1 6}$
17.Solve $10 x+3 y=75$ and $6 x-5 y=21$
18.Find the sum of first 22 terms of an Arithmetic progression 8,3,-2....
19.Finding the distance between the points $\mathrm{A}(8,-3)$ and $\mathrm{B}(0,9)$ using distance formula.

OR

Show that the points $(3,2)(-2,-3)$ and $(2,3)$ are collinear or non collinear
20.Draw a circle of radius 3 cm . Construct a pair of tangents to it, from a point 5 cm away from the circle.
21.Find the root of the quadratic equation $9 x^{2}-3 X-20=0$ by formula method

OR

Find the Nature of the root of the equation $x^{2}-x+12=0$
22. Find the quotient and reminder when $\mathrm{p}(\mathrm{x})=3 x^{3}+x^{2}+2 x+5$ is divided by $\mathrm{g}(\mathrm{x})=x^{2}+2 x+1$.

23A solid metallic right circular cylinder 1.8 m high with diameter of its base 2 m is melted and recast into a right circular cone with base of diameter 3 m . find the height of the cone.
24.Two identical dice are thrown. what is the probability of getting both the equal faces.
IV. Answer the following questions: $9 \times 3=27$
25.Prove that the tangent at any point of a circle is perpendicular to the radius through the point of Contact.

26 .prove that $\sqrt{3}$ is irrational number.
27.The following table gives the production yield per hectare of paddy of 50 forms of a village

Yield (kg/ hect)	$50-55$	$55-60$	$60-65$	$65-70$	$70-75$	$75-80$
No of farms	2	8	12	25	38	16

Change the distribution to a more that type and draw it's give.
28.Find the Mean of the following data.

C.I	$0-10$	$10-20$	$0-30$	$30-40$	$0-50$
F	3	5	3	9	5

OR

Calculate the mode for the following distribution

CI	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$
Frequency	7	8	2	2	1

28. In the area of the shaded reason in the given figure common between the two quadrants of circles of radius 8 centimetres each

29. Find the area of the triangle whose vertices are (2,-2),(-2,1),(5,2)

Or

Find the value of K if the points $\mathrm{A}(2,3) \mathrm{B}(4, \mathrm{k})$ and $(6,-3)$ are collinear.
30.The diagonal of the rectangular field is 60 metres more than the shorter side. If the longer side is 30 metres more than the shorter side find the side of the field.
31.The altitude of a right triangle is 7 centimetres less than its base .if the hypotenuse is 13 cm find other two sides.
32. Construct a triangle with sides 5 cm .6 cm and 7 cm and then another triangle whose sides are $7 / 5$ of the corresponding sides of the first triangle.

33 Show that $\sin \theta / 1+\cos \theta+1+\cos \theta / \sin \theta=2 \operatorname{cosec} \theta$

V. Answer the following questions. $\mathbf{4 \times 4}=16$

34.Solve the pair of linear equations graphically: $2 x-y=2$ and $2 x-3 y=-6$ using graphical method 35.The $4^{\text {th }}$ term of an AP is 11 and 8th term exceed twice the fourth terms by5. Find the sum of first 100 terms

Or

The p, , $^{\text {th }} q^{\text {th }} a$ nd $r^{\text {th }}$ term of an AP are $\mathrm{a}, \mathrm{b}, \mathrm{c}$ respectively. Prove that $\mathrm{a}(\mathrm{q}-\mathrm{r})+\mathrm{b}(\mathrm{r}-\mathrm{p})+\mathrm{c}(\mathrm{p}-\mathrm{q})=0$
36.The angle of elevation of the top of a flagpost from a point on a horizontal ground is found to be 30° on walking 6 m towards the post,the elevation increased by 15°.Find the height of the flagpost.
37.Provethat Area of similar triangles are proportional to the squares on the corresponding sides.

VI Answer the following: $\mathbf{5 \times 1 = 5}$

38.The bottom of the right cylindrical shaped vessel made from metallic sheet is closed by a cone shaped visual as shown in the figure. The radius of the circular base of the cylinder and radius of the circular base of the cone are each is equal to 7 cm .If the height of the cylinder is 20 centimetres and height of code is 3 centimetres calculate the cost of milk to fill completely this visual at the rate of rupees 20 per litre

KEY ANSWER MODEL OUESTION PAPER - 1

Qn. Nos.	Ans. Key	Value Points	Marks allotted
I		Four alternatives are given for each of the following questions: 8×1	
1.	(C)	25	1
2.	(D)	$x(x+1)=30$	1
3.	(A)	90	1
4.	(A)	Composite Number	1
5.	(B)	1	1
6.	(C)	10 cm	1
7.	(B)	Frustum of Cone	1
8.	(C)	$(0,0)$	1
II		Answer the following questions: $8 \times 1=8$	
9.		A line parallel to one side of a Triangle divides the other two sides in equal proportion.	1
10.		3	1
11.		$\begin{aligned} & \mathrm{P}(\mathrm{E})+\mathrm{P}(\operatorname{not} \mathrm{E})=1 \\ & 0.05+\mathrm{P}(\text { not } \mathrm{E})=1 \\ & \mathrm{P}(\operatorname{not} \mathrm{E})=1-0.05 \\ & =0.95 \end{aligned}$	1
12.		$\begin{aligned} & \text { S.A. }=4 \pi \mathrm{r}^{2} \\ & =4 \times(22 / 7) \times 7 \times 7 \\ & =616 \mathrm{~cm}^{2} \end{aligned}$	1
13.		$\begin{aligned} & d=\sqrt{(5-2) 2+(0-6) 2} \\ & =\sqrt{32+(-6) 2} \\ & =\sqrt{9+36} \\ & =\sqrt{45} \end{aligned}$	1
14.		Parallel Lines	1
15.	$20=2^{2} 5^{1}$	2 20 2 10 5	1

\(\left.$$
\begin{array}{|c|l|l|l|}\hline 16 . & & \begin{array}{l}\mathrm{b}^{2}-4 \mathrm{ac} \\
=(-4)^{2}-4 \times 2 \times 3 \\
=16-24 \\
=-8\end{array}
$$ \& 1

\hline III \& \& Answer the following questions : \quad \mathbf{8 \times 2}=\mathbf{1 6}\end{array}\right]\)| |
| :--- |
| 17. |

18.	$\begin{aligned} & \text { In } \triangle \mathrm{BDC}=\triangle \mathrm{ADB} \\ & \frac{\mathrm{BD}}{\mathrm{AD}}=\frac{\mathrm{DC}}{\mathrm{DB}} \\ & \mathrm{BD}^{2}=\mathrm{DC} \times \mathrm{AD} \\ & 8^{2}=\mathrm{DC} \times 4 \\ & \mathrm{DC}=\frac{64}{4}=16 \end{aligned}$	2
19.	$\begin{aligned} & 2 x+y=8 \\ & \frac{x-y=1}{3 x=9} \\ & x=9 / 3=3 \\ & x-y=1 \\ & 3-y=1 \\ & y=3-1=2 \end{aligned}$ OR $\begin{aligned} & 2 \mathrm{x}-3 \mathrm{y}-8=0 \\ & 2(\mathrm{k}-4) \mathrm{x}-\mathrm{ky}-(\mathrm{k}+3)=0 \\ & \frac{a 1}{a 2} \quad=\quad \frac{b 1}{b 2} \\ & \frac{2}{2(k-2)}=\quad \frac{3}{k} \\ & \mathrm{k}=3 \mathrm{k}-12 \\ & 3 \mathrm{k}-\mathrm{k}=12 \\ & \mathrm{~K}=12 / 2=6 \end{aligned}$	2

20.		Let $2+\sqrt{ } 5$ be rational $\begin{aligned} & 2+\sqrt{ } 5=\mathrm{p} / \mathrm{q} \\ & 2-\mathrm{p} / \mathrm{q}=\sqrt{ } 5 \\ & \frac{2 q-p}{q}=\sqrt{ } 5 \\ & \frac{2 q-p}{q} \quad \text { is rational } \end{aligned}$ $\sqrt{ } 5$ is irrational This contradicts our assumption Therefore $2+\sqrt{ } 5$ is irrational OR 24) 40 (1 $40=1 \mathrm{X} 24+16$ 24 16 16) $24(1$ $24=1 \mathrm{X} 16+8$ 16 08 8) $16(2$ $16=2 X 8+0$ 16 00	2

21.	$\begin{array}{lll} \alpha+\beta=1 / 4 & -b / a & =1 / 4 \\ \alpha \beta=-1 & & c / a \end{array}=-1 .$	2
22.	$\begin{aligned} & \operatorname{Sin} \theta=12 / 13 \\ & \begin{aligned} \mathrm{BC} & =\sqrt{13^{2}-12^{2}} \\ \quad & =\sqrt{169-144}=5 \\ \operatorname{Cos} \theta & =5 / 13 \end{aligned} \end{aligned}$	2
23.	Circle Radius $=3 \mathrm{~cm} \quad 8 \mathrm{~cm}$ away from centre	2

24.	$\begin{aligned} & \mathrm{n}(\mathrm{~S})=6 \times 6=36 \\ & \mathrm{n}(\mathrm{~A})=\operatorname{sum}=7=(1,6)(3,4)(6,1)(4,3) \\ & \mathrm{P}(\mathrm{~A})=\frac{n(A)}{n(S)}=\frac{7}{36} \end{aligned}$	2
IV	Answer the following: $\quad 9 \times 3=27$	
25.	Data: In $\triangle \mathrm{ABC}$ $\mathrm{AB}=\mathrm{AC}$ $\mathrm{PN} \perp \mathrm{AC}$ $\mathrm{PN} \perp \mathrm{AB}$ T.P.T.: MB. $\mathrm{CP}=\mathrm{NC} . \mathrm{PB}$ Proof: in \triangle BMP \& $\triangle \mathrm{CNP}$ $\llcorner M=\llcorner N=90$ $\llcorner B=\llcorner C \quad[A B=A C]$ (Angles opposite to equal sides in a Δ are equal) $\begin{gathered} \triangle \mathrm{BMP}=\Delta \mathrm{CNP} \\ \frac{B M}{C N}=\frac{B P}{C P} \\ \mathrm{BM} \times \mathrm{CP}=\mathrm{BP} \times \mathrm{CN} \end{gathered}$	3

26.		OR $\begin{aligned} & d=b+60 \\ & l=b+30 \end{aligned}$ let breadth be x $\begin{aligned} & \mathrm{d}=\mathrm{x}+60 \quad \mathrm{l}=\mathrm{x}+30 \\ & \mathrm{~d}^{2}=\mathrm{l}^{2}+\mathrm{b}^{2} \\ & (\mathrm{x}+60)^{2}=(\mathrm{x}+30)^{2}+\mathrm{x}^{2} \\ & \mathrm{x}^{2}+120 \mathrm{x}+3600=\mathrm{x}^{2}+60 \mathrm{x}+900+\mathrm{x}^{2} \\ & \mathrm{x}^{2}+60 \mathrm{x}-120 \mathrm{x}+900-3600=0 \\ & \mathrm{x}^{2}-60 \mathrm{x}-2700=0 \\ & \mathrm{x}^{2}-90 \mathrm{x}+30 \mathrm{x}-2700=0 \\ & \mathrm{x}(\mathrm{x}-90)+30(\mathrm{x}-90)=0 \\ & \mathrm{x}=90 \mathrm{x}=-30 \end{aligned}$ length cant be -ve $\begin{aligned} & x=90 \\ & l=90+60=150 \mathrm{~cm} \\ & \quad b=90 \mathrm{~cm} \end{aligned}$	3

27.	$\begin{aligned} \text { LHS }= & \sec \theta(1-\sin \theta)(\sec \theta+\tan \theta) \\ & =\frac{1}{\cos \theta}(1-\sin \theta)\left(\frac{1}{\cos \theta}+\frac{\sin \theta}{\cos \theta}\right) \\ & =\left(\frac{1-\sin \theta}{\cos \theta}\right)\left(\frac{1+\sin \theta}{\cos \theta}\right) \\ = & \frac{1-\sin ^{2} \theta}{\cos ^{2} \theta} \\ = & \frac{\cos ^{2} \theta}{\cos ^{2} \theta} \\ & =1 \end{aligned}$	3
	$\begin{aligned} & \text { OR } \\ & 4 \sin 30+\tan 48 \tan 42-3 \tan 45 \\ & =4 \times \frac{1}{2} \quad+\tan 48 \cdot \tan (90-48)-3 \times 1 \\ & =2+\tan 48 \times \cot 48-1 \\ & =2+\tan 48 \times(1 / \tan 48)-1 \\ & =2+1-1 \\ & =2 \end{aligned}$	
28.	Data: (1) A circle with centre 0 is given (2) P is external point (3) PA \& PB are tangents T.P.T. : $\mathrm{PA}=\mathrm{PB}$ Construction : Join OA \& OB Proof: In \triangle OAP \& Δ OBP 1) $\llcorner A=\llcorner B[$ Radius \perp tangent] 2) $\mathrm{OA}=\mathrm{OB}$ 3) $O P$ is common By RHS congruency $\triangle \mathrm{OAP}=\Delta \mathrm{OBP}$ $\mathbf{A P}=\mathbf{B P}(\mathbf{C P C T})$ Length of metallic wire $\begin{aligned} \text { Arc BC } & =(\theta / 360) 2 \pi \mathrm{r} \\ & =(120 / 360) 2(22 / 7) 21 \\ & =44 \end{aligned}$ Length $=\operatorname{arc} \mathrm{BC}+\mathrm{AB}+\mathrm{AC}$ $=44+21+21=86 \mathrm{~cm}$ Area of cloth $=(\theta / 360) \pi r^{2}$ $\begin{aligned} & =(120 / 360) \quad(22 / 7) \quad 21 \mathrm{X} 21 \\ & =462 \mathrm{~cm}^{2} \end{aligned}$	3

32.		$\begin{aligned} & A(8,-4) \quad B(9,5) \quad C(0,4) \\ & A B=\sqrt{ }(9-8)^{2}+(5+4)^{2} \\ & =\sqrt{ } 1^{2}+9^{2} \\ & =\sqrt{ } 82 \\ & B C=\sqrt{ }(0-9)^{2}+(4-5)^{2} \\ & =\sqrt{ } 9^{2}+1^{2} \\ & =\sqrt{ } 82 \end{aligned}$ It is isosceles ${ }^{\text {le }}$ $\begin{aligned} & \mathrm{CA}=\sqrt{ }(0-8)^{2}+(4+4)^{2} \\ & =\sqrt{ } 64+64 \\ & =\sqrt{ } 128 \\ & \mathrm{AB}=\mathrm{BC}=\sqrt{ } 82, \quad \text { It is isosceles } \Delta \end{aligned}$	3
33.		$\Delta=5 \mathrm{~cm}, 6 \mathrm{~m}, 7 \mathrm{~cm}$ 3/5 Ratio	3
34.		$\begin{align*} & x+y=7 \\ & x+y=7 \\ & x=0 \tag{0,7}\\ & y=0 \tag{7,0}\\ & x=1 \tag{1,6}\\ & \hline \end{align*}$ $y=7$ $x=7$ $y=6$$\begin{align*} & 3 x-y=1 \\ & x=0 \tag{0,1}\\ & x=2 \tag{2,5}\\ & y=2 \tag{1,2} \end{align*}$$y=-1$$6-y=1$$\mathrm{y}=5,$$3 x-2=1$$x=1$$x$ 0 2 1 y 1 5 2	3

35.		$\begin{align*} & \mathrm{a}=2 \\ & \mathrm{~S}_{\mathrm{n}}=\frac{n}{2} \quad[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}] \\ & \mathrm{S}_{5}=\frac{5}{2}[2(2)+(5-1) \mathrm{d}]=10(1+\mathrm{d})---(1) \\ & \tag{2}\\ & \begin{aligned} \mathrm{S}_{10}=\frac{10}{2}[2(2)+(10-1) \mathrm{d}] & =5(4+9 \mathrm{~d}) \cdots----(2) \\ \mathrm{S}_{6}+\mathrm{S}_{7}+\mathrm{S}_{8}+\mathrm{S}_{9}+\mathrm{S}_{10} & =\mathrm{S}_{10}-\mathrm{S}_{5} \\ & =5(4+9 \mathrm{~d})=-10(1+\mathrm{d}) \\ & =20+45 \mathrm{~d}-10-10 \mathrm{~d} \\ & =10+35 \mathrm{~d} \\ & =5(2+7 \mathrm{~d}) \end{aligned} \end{align*}$	3

	According to Qs $10(1+\mathrm{d})=1 / 4 \times 5(2+7 \mathrm{~d})$ $40+40 \mathrm{~d}=10+35 \mathrm{~d}$ $5 \mathrm{~d}=-30$ $\mathrm{~d}=-6$ $\left.\mathrm{~S}_{30}=\frac{30}{2}[2(2)+30-1) 1-6\right]$ $=15(4-174)$ $=15(-170)$ $=-2550$	$\mathbf{3}$

36.		$\begin{array}{ll} \llcorner\mathrm{BPA}=30 & \llcorner\mathrm{BQA}=45 \\ \text { In } \triangle \mathrm{APB} & \\ \frac{P B}{A B}=\cot 30 & \\ \mathrm{~PB}=\mathrm{h} \cot 30 & \\ =\mathrm{h} \sqrt{3}--------(1) \tag{1} \end{array}$ In $\triangle \mathrm{ABQ}$ $\frac{B Q}{A B}=\tan 45$ $\begin{equation*} \mathrm{BQ}=\mathrm{AB}=\mathrm{h} \tag{2} \end{equation*}$ Adding (1) and (2) $\begin{aligned} & \mathrm{PB}+\mathrm{BQ}=\mathrm{h} \sqrt{ } 3+\mathrm{h} \\ & 100=\mathrm{h}(\sqrt{ } 3+1) \\ & \mathrm{h}=\underline{100 /(\sqrt{3}+1)} \\ & \quad=50(\sqrt{3}-1) \quad \text { by rationalizing the denominator }) \end{aligned}$	4
37.		$\text { Volume of } \begin{aligned} \mathrm{H}_{2} \mathrm{O} & =\frac{1}{3} \mathrm{~h}\left(\mathrm{r}_{1}{ }^{2}+\mathrm{r}_{2}^{2}+\mathrm{r}_{1} \mathrm{r}_{2}\right) \\ & =\frac{1}{3}(8)\left(9^{2}+9 \times 3+3^{2}\right) \\ & =\frac{1}{3} \frac{22}{7}(81+27+9) \\ & =312 \mathrm{~cm}^{3} \end{aligned}$	4

Qn. Nos.	Ans. Key	Value Points	Marks allotted
		```Area of copper sheet required to make bucket \(=\) CSA of frustrum + area of lower end of bucket \(1=\quad \sqrt{ } \mathrm{h}^{2}+\left(\mathrm{r}_{1}-\mathrm{r}_{2}\right)^{2}\) \(=\sqrt{ } 8^{2}+(9-3)^{2}\) \(=\sqrt{ } 64+36\) \(\mathrm{l}=10 \mathrm{~cm}\) Area of copper sheet required to make bucket \(=\) CSA of frustrum + area of lower end of bucket \(=\pi 1\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right)+\pi\left(\mathrm{r}_{2}\right)^{2}\) \(=\pi \times 10(9+1)+\pi \times 3^{2}\) \(=120 \pi+9 \pi=129 \pi \mathrm{~cm}^{2}\)```	4
38.		Given :   Height of a cylindrical bucket, $\mathbf{H}=\mathbf{3 2} \mathbf{~ c m}$   Radius of cylindrical bucket, $\mathbf{R = 1 8} \mathbf{~ c m}$   Height of the conical heap of sand , $\mathbf{h}=\mathbf{2 4} \mathbf{~ c m}$   Let the radius and slant height of the heap of sand be 'r' \& ' 1 '.   Here, the sand filled in cylindrical bucket from a conical heap of sand on the ground. So volume of cylindrical bucket will be equal to the volume of conical heap.	4

Volume of cylindrical bucket $=$ Volume of conical heap of sand
$\pi R^{2} H=1 / 3 \pi r^{2} h$
$\mathrm{R}^{2} \mathrm{H}=1 / 3 \mathrm{r}^{2} \mathrm{~h}$
$18^{2} \times 32=1 / 3 \times r^{2} \times 24$
$18 \times 18 \times 32=8 \mathrm{r}^{2}$
$r^{2}=(18 \times 18 \times 32) / 8$
$\mathrm{r}^{2}=18 \times 18 \times 4$
$\mathrm{r}^{2}=1296$
$r=\sqrt{ } 1296$
$\mathrm{r}=36 \mathrm{~cm}$
Radius of the heap of sand $=\mathbf{3 6} \mathbf{~ c m}$
Hence the radius of heap is 36 cm .
$\mathrm{l}^{2}=\mathrm{h}^{2}+\mathrm{r}^{2}$
$1=\sqrt{ }\left(h_{2}{ }^{2}+r_{2} 2\right)$
$=\sqrt{ }\left(24^{2}+36^{2)}\right.$
$=2 \times 2 \times 3 \sqrt{ } 13$
$=12 \sqrt{ } 13 \mathrm{~cm}$
38. State and prove pythagoras theorem
"In a right-angled triangle, the square of the hypotenuse side is equal to the sum of squares of the other two sides


Given: ABC is a triangle in which $\angle \mathrm{ABC}=90 \circ$
To prove : $\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
Construction: Draw BD $\perp \mathrm{AC}$.
Proof:


Qn.Nos	Ans   Key	Value Poitns	Marks   alloted
I 1.	(A)	If $a_{n}=n^{2}-2$ then the value of $a_{4}$ is   A) 14   B) 16   C) 18   D) 20   Ans; (A) 14	1
2.	(A)	If a pair of linear equations are given by $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$, then the condition for the intersecting lines is given by.   A) $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$   B) $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$   C) $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}$   D) $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$   Ans: (A) $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$	1
3.	(C)	ABC and BDE are two equilateral triangles such that D is the mid -point of $B C$. Ratio of the areas of triangles ABC and BDE is   A) $2: 1$   B) $1: 2$   C) $4: 1$   D) $1: 4$   Ans: (C) 4:1	1
4.	(D)	Angle between tangent and radius is always equal to   A) $50^{\circ}$   B) $60^{\circ}$   C) $70^{\circ}$   D) $90^{\circ}$   Ans: (D) $90^{0}$	1
5.	(D)	Given $15 \cot \mathrm{~A}=8$ then the value of $\sec \mathrm{A}$ is   A) $\frac{15}{8}$   B) $\frac{8}{15}$   C) $\frac{15}{17}$   D) $\frac{17}{8}$   Ans: (D) $17 / 8$	1
6.	(B)	If Median is equal to 26 , mode is equal to 27 then Mean is   A) 25   B) 25.5   C) 26   D) 26.5   Ans:(B) 25.5	1
7.	(A)	Probability of sure event is   A) 1   B) 0   C) 2   D) 3   Ans: (A) 1	1
8.	(C)	The Volume of the frustum of cone is given by   A) $\frac{1}{3} \pi h\left(r_{1}{ }^{2}+r_{2}^{2}\right)$   B) $\frac{1}{3} \pi h\left(r^{2}-r_{2}^{2}+r_{1} r_{2}\right)$   C) $\frac{1}{3} \pi h\left(r_{1}{ }^{2}+r_{2}^{2}+r_{1} r_{2}\right)$   D) $\frac{1}{3} \pi h\left(r^{2}-r_{2}{ }^{2}\right)$   Ans: (C) $\frac{1}{3} \pi h\left(r_{1}{ }^{2}+r_{2}{ }^{2}+r_{1} r_{2}\right)$	1


$\begin{gathered} \text { II. } \\ \text { Q.Nos } \end{gathered}$	Value Points	Marks alloted
9.	$\begin{aligned} & \text { Show that } \tan 48^{0} \cdot \tan 23^{0} \cdot \tan 42^{0} \cdot \tan 67^{0}=1 \\ & \tan 48^{0} \cdot \tan 23^{0} \cdot \tan 42^{0} \cdot \tan 67^{0} \\ & \tan (90-42)^{0} \cdot \tan 42^{0} \cdot \tan 67^{0} \cdot \tan (90-67)^{0} \\ & \cot 42^{0} \tan 42^{0} \tan 67^{0} \cdot 067^{0} \\ & 1 \end{aligned}$	1
10.	Find the volume of cube whose one edge is 4 cm   Volume of the cube $=a^{3}$   Volume of the cube $=4^{3}$   Volume of the cube $=64 \mathrm{~cm}^{3}$	1
11.	In a right angled triangle, the square of the hypotenuse is equal to sum of the squares of the other two sides.	1
12.	Express 140 as a product of prime numbers. $\begin{gathered} 140=2 \times 2 \times 5 \times 7 \\ 2^{2} \times 5 \times 7 \end{gathered}$	1
13.	From a point Q , the length of tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm . Then find the value of Radius of the circle.   By Pythagoras theorem we say that, $\begin{aligned} & R Q^{2}=P R^{2}+P Q^{2} \\ & 25^{2}=x^{2}+24^{2} \\ & 625=x^{2}+576 \\ & x^{2}=625-576 \\ & x^{2}=49 \\ & x=7 \mathrm{~cm} . \\ & \text { Radius }=7 \mathrm{~cm} . \end{aligned}$	1
14.	Find the distance between the origin and a point $(5,12)$. $\begin{aligned} & d=\sqrt{x^{2}+y^{2}} \\ & d=\sqrt{5^{2}+12^{2}} \\ & d=\sqrt{25+144} \\ & d=\sqrt{169} \\ & d=13 \text { units } \end{aligned}$	1
15.	Find the discriminant of the quadratic equation $x^{2}+6 x+5=0$ and hence find the nature of the roots. $x^{2}+6 x+5=0$	1


	$\begin{aligned} & \\ & \mathrm{a}=1, \mathrm{~b}=6, \mathrm{c}=5 \\ & \Delta=\mathrm{b} 2-4 \mathrm{ac} \\ & \Delta=6^{2}-4(1)(5) \\ & \Delta=36-20 \\ & \Delta=16 \end{aligned}$   Hence $\Delta>0$, so we get two real roots	
16.	Find the quadratic polynomial whose sum and product is $1 / 4$ and -1 respectively Solution: $\begin{aligned} & \alpha \beta=-1 \text { and } \alpha+\beta=1 / 4 \\ & \mathrm{x}^{2}-(\alpha+\beta) \mathrm{x}+\alpha \beta=0 \\ & \mathrm{x}^{2}-(1 / 4) \mathrm{x}+(-1)=0 \\ & \mathrm{x}^{2}-1 / 4 \mathrm{x}-1=0 \\ & 4 \mathrm{x}^{2}-\mathrm{x}-4=0 \end{aligned}$	1
$\begin{array}{\|l\|} \hline \text { III } \\ 17 . \end{array}$	$\text { Find the sum of the given AP } 7+10.5+14+\ldots \ldots . .+84$ $\begin{aligned} & 7,10.5,14 \ldots \ldots \ldots \ldots . . .{ }_{2} \\ & \mathrm{a}=7 \\ & \mathrm{~d}=10.5-7=3.5 \\ & \mathrm{a}_{\mathrm{n}}=84 \\ & \text { so } \\ & \mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d} \\ & 84=7+(\mathrm{n}-1) 3.5 \\ & 84-7=3.5 \mathrm{n}-3.5 \\ & 77+3.5=3.5 \mathrm{n} \\ & 80.5=3.5 \mathrm{n} \\ & \mathrm{n}=23 \\ & \mathrm{~S}_{23}=\frac{n}{2}(\mathrm{a}+1) \\ & \mathrm{S}_{23}=\frac{23}{2}(7+84) \\ & \mathrm{S}_{23}=\frac{23}{2}(91) \\ & \mathrm{S}_{23}=1046.5 \end{aligned}$	2
18.	Solve the pair of linear equations by elimination method $\begin{aligned} & 2 x+y=6 \text { and } x-y=3 \\ & 2 \mathrm{x}+\mathrm{y}=6 \\ & \underline{\mathrm{x}-\mathrm{y}=3} \\ & \underline{\mathrm{x}=9} \end{aligned}$	2


	$\begin{aligned} & x=3 \\ & x-y=3 \\ & 3-y=3 \\ & -y=3-3 \\ & y=0 \end{aligned}$	
19.	Prove that $2-3 \sqrt{3}$ is irrational   Let us assume $2-3 \sqrt{3}$ as rational, where $a$ and $b$ are integers.   So, $\begin{aligned} & 2-3 \sqrt{3}=\frac{a}{b} \\ & -3 \sqrt{3}=\frac{a}{b}-2 \\ & -3 \sqrt{3}=\frac{2 b-a}{b} \\ & \sqrt{3}=\frac{2 b-a}{3 b} \end{aligned}$   Here $\frac{2 b-a}{3 b}$ is a rational, so $\sqrt{3}$ is also rational but this is contradicts the fact that $\sqrt{3}$ is irrational.   Hence our assumption was wrong, so we conclude $2-3 \sqrt{3}$ is irrational.	2
20.	Draw a circle of radius 6 cm . From a point 10 cm away from its centre, construct the pair of tangents to the circle and measure the lengths. $\mathrm{r}=6 \mathrm{~cm}, \mathrm{~d}=10 \mathrm{~cm} ., \mathrm{t}=\text { ? }$   Tangent, $\mathrm{PQ}=\mathrm{PR}=8 \mathrm{~cm}$.	2
21.	Find the distance between the two points $(-5,7)$ and $(-1,3)$. $\begin{aligned} \therefore \mathrm{PQ} & =\sqrt{\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}} \\ & =\sqrt{\{-1-(-5)\}^{2}+(3-7)^{2}} \\ & =\sqrt{(-1+5)^{2}+(-4)^{2}} \\ & =\sqrt{(4)^{2}+(-4)^{2}} \\ & =\sqrt{16+16} \\ & =\sqrt{32} \\ \therefore \quad \mathrm{PQ} & =\sqrt{16 \times 2} \\ \therefore \quad \mathrm{PQ} & =4 \sqrt{2} \end{aligned}$	2
22.	Find the coordinates of the point which divides the line joining of $(-1,7)$ and $(4,-3)$ in the ratio $2: 3$.	2


	$\begin{aligned} & \left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right) \\ = & \left(\frac{2 \times 4+3 \times-1}{2+3}, \frac{2 \times-3+3 \times 7}{2+3}\right) \\ = & \left(\frac{8-3}{5}, \frac{-6+21}{5}\right) . \\ = & \left(1, \frac{15}{5}\right) \\ = & (1,3) \\ \therefore & P(x, y)=(1,3)=(1,3) . \end{aligned}$	
23.	Solve the given quadratic equation by formula method $2 x^{2}-7 x+3=0$. $\begin{aligned} x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\ & =\frac{-(-7) \pm \sqrt{(-7)^{2}-4(2)(3)}}{2 \times 2} \\ & =\frac{7 \pm \sqrt{49-24}}{4} \\ & =\frac{7 \pm \sqrt{25}}{4} \quad=\frac{7 \pm 5}{4} \\ & =\frac{7+5}{4}, \quad \text { OR } \frac{7-5}{4} \\ & =\frac{12}{4} \quad \text { OR } \frac{2}{4} \\ & \therefore x=3 \text { OR } \frac{1}{2} . \end{aligned}$	2
24.	A box contains 90 discs which are numbered from 1 to 90 . If one disc is drawn at random from the box, find the probability that it bears   (i) a two-digit number   (ii) a perfect square number   (iii) a number divisible by 5 .   Solution:   Number of discs which are numbered from 1 to 30, $\mathrm{n}(\mathrm{~S})=90$   (i) A two-digit number :   Out of 90 , one digit number $=9$ $\therefore 2 \text {-digit numbers }=90-9=81$   $\therefore$ 2-digit numbers, $\mathrm{n}(\mathrm{E})=81$ $\therefore \quad \mathrm{P}(\mathrm{E})=\frac{\mathrm{n}(\mathrm{E})}{\mathrm{n}(\mathrm{~S})}=\frac{81}{90}$   (ii) A perfect square number : $\begin{aligned} & 1,4,9,16,25,36,49,64,81 \\ & \therefore \mathrm{n}(\mathrm{E})=9 \end{aligned}$	2


	$\therefore P(E)=\frac{n(E)}{n(S)}=\frac{9}{90}=\frac{1}{10}$   (iii) A number divisible by 5 : $\begin{aligned} & 5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90 . \\ & \therefore n(E)=18 \\ & \therefore P(E)=\frac{n(E)}{n(S)}=\frac{18}{90}=\frac{1}{5} \end{aligned}$	
$\begin{aligned} & \text { IV. } \\ & 25 . \end{aligned}$	During the medical check up of 35 students of a class , their weights were recorded as follow Draw a less than type Ogive for the given data.   Scale: $x$-axis: $1 \mathrm{~cm}=2 \mathrm{~kg}$. $y$-axis: $1 \mathrm{~cm}=5$ students	3
26.	Construct a triangle with sides $5 \mathrm{~cm}, 6 \mathrm{~cm}$ and 7 cm and then another triangle whose sides are $\frac{7}{5}$ of the corresponding sides of the first triangle.   Solution:   Construct an $\triangle \mathrm{ABC}$ having sides $5 \mathrm{~cm}, 6 \mathrm{~cm}$ and 7 cm . Then construct another triangle whose sides are 75 of the corresponding sides of the first triangle.	3



29.	Calculate the area of the designed region in the given figure common between the two quadrants of circles of radius 8 cm each   i) Area of Square, $\mathrm{ABCD}=\mathrm{a}^{2}=(8)^{2}=64 \mathrm{~cm}^{2}$.   ii) Sum of Areas of Part II and Part III = Area of the segment with centre D and radius of 8 cm . $\begin{aligned} \therefore \quad & =\frac{\theta}{360} \times \pi r^{2} \\ & =\frac{90}{360} \times \frac{22}{7} \times(8)^{2} \\ & =\frac{1}{4} \times \frac{22}{7} \times 64 \\ & =\frac{352}{7} \mathrm{sq} . \mathrm{cm} . \end{aligned}$   iii) Area of Part I = (Sum of Part I, II and III) - (Sum of the area of Part II, III) $=$ Area of Square ABCD - (Sum of the area of part II and III) $\begin{aligned} & =64 \mathrm{~cm}^{2}-\frac{352}{7} \mathrm{~cm}^{2} \\ & =\frac{448-352}{7} \mathrm{~cm}^{2} \\ & =\frac{96}{7} \mathrm{~cm}^{2} \end{aligned}$   Similarly, Area of Part II $=\frac{96}{7} \mathrm{~cm}^{2}$ $\begin{aligned} \therefore \text { Area of Region III } & =\frac{352}{7}-\frac{96}{7} \\ & =\frac{256}{7} \mathrm{~cm}^{2} \end{aligned}$	3
30.	. Prove that $-\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\sec \theta \cdot \operatorname{cosec} \theta$	3


	$\begin{aligned} & \text { LHS }= \frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta} \\ &= \frac{\frac{\sin \theta}{\cos \theta}}{\left(1-\frac{\cos \theta}{\sin \theta}\right)}+\frac{\frac{\cos \theta}{\sin \theta}}{\left(1-\frac{\sin \theta}{\cos \theta}\right)} \\ &=\frac{\frac{\sin \theta}{\cos \theta}}{\left(\frac{\sin \theta-\cos \theta}{\sin \theta}\right)}+\frac{\frac{\cos \theta}{\sin \theta}}{\left(\frac{\cos \theta-\sin \theta)}{\cos \theta}\right)} \\ &= \frac{\sin \theta \times \sin \theta}{\cos \theta(\sin \theta-\cos \theta)}+\frac{\cos \theta \times \cos \theta}{\sin \theta(\cos \theta-\sin \theta)} \\ &= \frac{\sin ^{2} \theta}{\cos \theta(\sin \theta-\cos \theta)}+\frac{\cos ^{2} \theta}{\sin \theta(\cos \theta-\sin \theta)} \\ &= \frac{\sin \theta \times \sin 2 \theta-\cos \theta \times \cos { }^{2} \theta}{\cos \theta \times \sin \theta(\sin \theta-\cos \theta)} \\ &=\frac{\sin ^{3} \theta-\cos { }^{3} \theta}{\cos \theta \times \sin \theta(\sin \theta-\cos \theta)} \\ &=\frac{(\sin \theta-\cos \theta) \times\left(\sin { }^{2} \theta+\cos { }^{2} \theta+\sin \theta \cdot \cos \theta\right)}{\cos \theta \times \sin \theta \times(\sin \theta-\cos \theta)} \\ &=\frac{\sin { }^{2} \theta+\cos { }^{2} \theta+\sin \theta \times \cos \theta}{\cos \theta \times \sin \theta} \\ &=\frac{1+\sin \theta \times \cos \theta}{\cos \theta \times \sin \theta} \\ &=\frac{1}{\cos \theta \times \sin \theta}+1 \\ &=1+\left(\frac{1}{\cos \theta)\left(\frac{1}{\sin \theta}\right)}\right. \\ & \text { LHS }=1+\sec \theta \times \cos \theta \end{aligned}$   'OR'   Prove that $-(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A+\cot ^{2} A$ $\begin{aligned} & \text { LHS }=(\sin \mathrm{A}+\operatorname{cosec} \mathrm{A})^{2}+(\cos \mathrm{A}+\sec \mathrm{A})^{2} \\ = & \left\{\sin ^{2} \mathrm{~A}+\operatorname{cosec}^{2} \mathrm{~A}+2 \sin \mathrm{~A} \cdot \operatorname{cosec} \mathrm{~A}\right\} \mathrm{X} \\ & \left\{\cos ^{2} \mathrm{~A}+\sec ^{2} \mathrm{~A}+2 \cos \mathrm{~A} \times \sec \mathrm{A}\right\} \\ = & \left(\sin ^{2} \mathrm{~A}+\operatorname{cosec}^{\mathrm{A}}+2\right)+\left(\cos ^{2} \mathrm{~A}+\sec ^{2} \mathrm{~A}+2\right) \\ = & 2+2+\left(\sin ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}\right)+\sec ^{2} \mathrm{~A}+\operatorname{cosec}^{2} \mathrm{~A} \\ = & 5+\left(\tan ^{2} \mathrm{~A}+1\right)\left(\cot ^{2} \mathrm{~A}+1\right) \\ \text { LHS } \quad= & 7+\tan ^{2} \mathrm{~A}=\cot ^{2} \mathrm{~A} \\ \therefore & \text { LHS }=\text { RHS. } \end{aligned}$	
31.	Obtain all other zeroes of $3 \times 4+6 \times 3-2 \times 2-10 x-5$, if two of its zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$ Solution:	3


	Solution: $\begin{aligned} \therefore \quad \text { Factors } & =\left(x-\sqrt{\frac{5}{3}}\right)\left(x+\sqrt{\frac{5}{3}}\right) \\ & =x^{2}-\frac{5}{3} \end{aligned}$   $3 x^{2}-5$ is the factor of polynomial.   $\therefore$ following the Division Igorithm process,   $\therefore \operatorname{In} \mathrm{q}(\mathrm{x})=\mathrm{x}^{2}+2 \mathrm{x}+1$, there are two more roots. $x^{2}+2 x+1=(x+1)^{2}$   other roots are: $x=-1,-1$	
32.	A train travels a distance of 480 km at a uniform speed. If the speed had been $8 \mathrm{~km} / \mathrm{h}$ less then it would have taken 3hours more to cover the same distance. Find the speed of the train.   Solution:   Let the initial speed of a train be ' $x$ ' $k m / h$.   Time required to travel x km is 1 hour. Time required to travel $480 \mathrm{~km} \ldots \ldots .$. ?   480x hr   If its speed decreases to $8 \mathrm{~km} / \mathrm{h}$, then it is $(x-8) \mathrm{km} / \mathrm{h}$.   Time required to cover $(x-8) \mathrm{km}$ is 1 Hr .   Time required to cover 480 km $\qquad$ $\begin{aligned} & \frac{480}{(x-8)} \mathrm{Hr} \\ & \frac{480}{(x-8)} \text { is } 3 \text { Hr. lesser than } \frac{480}{x} . \\ \therefore \Rightarrow & \frac{480}{(x-8)}+\frac{3}{1}=\frac{480}{x} \\ \Rightarrow & \frac{480+3(x-8)}{(x-8)}=\frac{480}{x} \\ \Rightarrow & \frac{480+3 x-24}{(x-8)}=\frac{480}{x} \\ \Rightarrow & \frac{(3 x+456)}{(x-8)}=\frac{480}{x} \end{aligned}$	3


|  | $\therefore \mathrm{x}(3 \mathrm{x}+456)=480(\mathrm{x}-8)$ |
| :--- | :--- | :--- |
| $3 \mathrm{x}^{2}+456 \mathrm{x}=480 \mathrm{x}+3840$ |  |
| $3 \mathrm{x}^{2}+456 \mathrm{x}-480 \mathrm{x}+3840=0$ |  |
| $3 \mathrm{x}^{2}-24 \mathrm{x}+3840=0$ |  |
| $\therefore \mathrm{x}^{2}-8 \mathrm{x}+1280=0$ |  |
| This is the required equation. |  |
| Now, we have to solve for $\mathrm{x}:$ |  |
| $\mathrm{x}^{2}-8 \mathrm{x}+1280=0$ |  |
| $\mathrm{x}^{2}-40 \mathrm{x}+32 \mathrm{x}+1280=0$ |  |
| $\mathrm{x}(\mathrm{x}-40)+32(\mathrm{x}+40)=0$ |  |
| $(\mathrm{x}-40)(\mathrm{x}+32)=0$ |  |
| If $\mathrm{x}-40=0$, then $\mathrm{x}=40$ |  |
| If $\mathrm{x}+32=0$, then $\mathrm{x}=-32$ |  |
| $\therefore$ Average speed of train is 40 km/hr. |  |$\quad$.


	$\begin{aligned} & 2 a+10 d=24 \\ & 2 a+10(5)=24 \\ & 2 a+50=24 \\ & 2 a=24-50 \\ & 2 a=-26 \\ & a=26 / 2, \\ & \therefore a=-13 . \\ & \therefore A P: a, a+d, a+2 d, . . \\ & -13,-13+5,-13+2(5), \\ & -14,-8,-3, \ldots \ldots \ldots \ldots . \end{aligned}$	
V.	A container opened from the top and made up of a metal sheet, is in the form of a frustum of a cone of height 16 cm with radii of is lower and upper ends as 8 cm and 20 cm , respectively. Find the cost of the milk which can completely fill the container , at the rate of Rs 20per litre. Also find the cost of metal sheet used to make the container , if it costs Rs 8per $100 \mathrm{~cm}^{2}$   Solution: $\begin{aligned} & \mathrm{R}=20 \mathrm{~cm} \\ & \mathrm{r}=8 \mathrm{~cm} \\ & \mathrm{~h}=20 \mathrm{~cm} \end{aligned}$   $\therefore$ Slant height, $\begin{aligned} l & =\sqrt{\mathrm{h}^{2}+(\mathrm{R}-\mathrm{r})^{2}} \\ & =\sqrt{(16)^{2}+(20-8)^{2}} \\ & =\sqrt{256+144} \\ & =\sqrt{400} \\ l & =20 \mathrm{~cm} . \end{aligned}$   $\therefore$ Volume of metallic sheet,	4

$=\frac{1}{3} \pi h\left(R^{2}+r^{2}+R r\right)$
$=\frac{1}{3} \pi \times 16\left(20^{2}+8^{2}+20 \times 8\right)$
$=\frac{1}{3} \pi \times 16 \times 624$
$=\frac{1}{3} \times 3.14 \times 16 \times 624$
$=10449.92 \mathrm{~cm}^{3}$.
Quantity of milk in the container
$=10449.821000$
Cost of 1 litre of milk is Rs. 20,
Cost of 10.45 litres of milk ??
$\therefore 20 \times 10.45=$ Rs. 209 .
Cost of metal sheet $=\pi(\mathrm{R}+\mathrm{r})+\pi \mathrm{r}^{2}$
$=\pi\left\{20 \times(20+8)+(8)^{2}\right\}$
$=3.14 \times 624$
$=1959.36 \mathrm{~cm}^{2}$.
$\therefore$ Cost of preparing metallic container: For $100 \mathrm{~cm}^{2}$ Rs. 8
$\therefore$ For $1959.36 \mathrm{~cm}^{2} \ldots \ldots$ ?
$=8 \times 1159.36100$
= Rs. 156.75.
"OR"
A wooden article was made by scooping out a hemisphere from each end of a solid cylinder, If the height of the cylinder is 10 cm , and its base is of radius 3.5 cm , find the total surface area of the article.

Solution:


Radius of base of cylinder, $\mathrm{r}=3.5 \mathrm{~cm}$
Height, $\mathrm{h}=10 \mathrm{~cm}$.


	Solution: intersecting point, $P(2,2)$ i.e., $x=2, y=2$	
36	200 logs are stacked In the following manner. 20 logs in the bottom row, 19 in the next row, 18 in the row next to it and so on (see the fig. given below). In how many rows are the 200 logs placed and how many logs are In the top row?   Solution: $\begin{aligned} & 20,19,18, \ldots . \\ & \mathrm{a}=20, \mathrm{~d}=19-20=-1 \\ & \mathrm{~S}_{\mathrm{n}}=200, \mathrm{n}=?, \mathrm{a}_{\mathrm{n}}=? \\ & \mathrm{Sn}=\mathrm{n} 2[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}] \\ & 200=\mathrm{n} 2[2 \times 20+(\mathrm{n}-1)(-1)] \\ & 200=\mathrm{n} 2[40-\mathrm{n}+1] \\ & 200=\mathrm{n} 2[41-\mathrm{n}] \\ & \therefore 400=\mathrm{n}(41-\mathrm{n}) \\ & 400=4 \mathrm{n}-\mathrm{n}^{2} \\ & \therefore \mathrm{n}^{2}-41 \mathrm{n}+400=0 \\ & \mathrm{n}^{2}-25 \mathrm{n}-16 \mathrm{n}+400=0 \\ & \mathrm{n}(\mathrm{n}-25)-16(\mathrm{n}-25)=0 \\ & (\mathrm{n}-25)(\mathrm{n}-16)= \\ & 1 \mathrm{f} \mathrm{n}-16=0 \text { then, } \mathrm{n}=16 \\ & \therefore \mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d} \\ & \mathrm{a}_{16}=20+(16-1)(-1) \\ & =20+15(-1) \\ & =20-15 \\ & \therefore \mathrm{a}_{16}=5 \end{aligned}$   $\therefore 200$ logs are placed In 16 rows and there are 5 logs in the top row.	4


	OR   A spiral is made up of successive semicircles, with centres alternately at A and B, starting with centre at A , of radii $0.5 \mathrm{~cm} .1 .0 \mathrm{~cm} .1 .5 \mathrm{~cm}, 2.0 \mathrm{~cm}$ as shows In fig. What Is the total length of such a spiral made up of thirteen consecutive semicircles?   (Take $\pi=227$ )   [Hint: Length of successive semicircles is $1_{1}, 1_{2}, 1_{3}, 1_{4}$ with centres at A, B, A. B respectively.]   Solution: $\begin{aligned} & : 11=\pi \times 12,12=\pi \times 1.13=\pi \times 32 \\ & 11=\pi 2,12=\mathrm{p}, 13=32 \pi \end{aligned}$   $\therefore$ Arithmetic Progression,   $l_{1}, l_{2}, l_{3}, l_{4}$, $\begin{aligned} & l_{2}-l_{1}=l_{3}-l_{2}=\frac{1}{2} \pi \\ \therefore \quad & a=\frac{\pi}{2}, \quad d=\frac{\pi}{2} \end{aligned}$   Circumference. $l=l_{1}+l_{2}+\ldots \ldots \ldots .+l_{13}$ $=\frac{13}{2}[2 \mathrm{a}+12 \mathrm{~d}]$ $=\frac{13}{2}\left[2 \times \frac{\pi}{2}+12 \times \frac{\pi}{2}\right]$ $=\frac{91}{2} \pi$ $=\frac{{ }^{13} 9 t}{2} \times \frac{2 z^{11}}{7}$ $=13 \times 11$ $l=143 \mathrm{~cm} .$	
37.	A 1.2 m tall girl spots a balloon moving with the wind in a horizontal line at a height of 88.2 m from the ground. The angle of elevation of the balloon from the eyes of the girl at any instant is $60^{\circ}$. After some time, the angle of elevation reduces to $30^{\circ}$. Find the distance travelled by the balloon during the interval.   Solution:   Solution:   Height of the girl, $\mathrm{OO}^{\prime}=1.2 \mathrm{~m}$	4

$\angle \mathrm{AOB}=60^{\circ}$
$\angle \mathrm{POQ}=30^{\circ}$
Let $O B=x \mathrm{~m}, \mathrm{BQ}=\mathrm{d} \mathrm{m}, \mathrm{O}^{\prime} \mathrm{Q}^{\prime}=\mathrm{y} \mathrm{m}$.
$\mathrm{AB}=\mathrm{PQ}=\mathrm{Q}^{\prime} \mathrm{P}-\mathrm{Q}^{\prime} \mathrm{Q}$
$=88.2-\mathrm{O}^{\prime} \mathrm{O}$
$=88.2-1.2=87 \mathrm{~m}$.
Let $\mathrm{OQ}=$ ' y '.
Distance balloon travelled, $\mathrm{d}=\mathrm{BQ}$
$=(y-x)$
In $\triangle \triangle A O B, \quad \frac{A B}{O B}=\tan 60^{\circ}$

$$
\begin{aligned}
& \frac{87}{x} \\
= & \sqrt{3} \\
\therefore \quad x & =\frac{87}{\sqrt{3}} m
\end{aligned}
$$

In $\triangle \triangle \mathrm{PO}, \quad \frac{\mathrm{PQ}}{\mathrm{OQ}}=\tan 30^{\circ}$

$$
\begin{aligned}
\frac{87}{y} & =\frac{1}{\sqrt{3}} \\
\therefore \quad y & =87 \sqrt{3} \mathrm{~m}
\end{aligned}
$$

$d=y-x$
$=87 \sqrt{3}-\frac{87}{\sqrt{3}}$
$=87\left(\sqrt{3}-\frac{1}{\sqrt{3}}\right)$
$=87 \times \frac{2}{\sqrt{3}}$
$\therefore \quad \mathrm{OQ}=\mathrm{d}=87 \times \frac{2}{3} \times \sqrt{3}$
$=58 \sqrt{3} \mathrm{~m}$.


Hence proved.

KEY ANSWER MODEL QUESTION PAPER - 3

Qn.Nos.	Ans. Key	Value Points	Marks allotted
I. 1.	(B)	Multiple Choice questions: $\quad \mathbf{8 \times 1 = 8}$ $15^{\text {th }}$ term of the A.P $x-7, x-2, x+3$ $\qquad$ is   (A) $x+73$   (B) $x+63$   (C) $x+83$   (D) $x+53$   Ans:   KSEEB QP JAN 2015 $x+63$	1
2.	(C)	In the following figure, $\angle \mathrm{ABC}=90^{\circ}$ and $\mathrm{BD} \perp \mathrm{AC}$. If $\mathrm{BD}=8 \mathrm{~cm}, \mathrm{AD}=$ 4 cm , then the length of $C D$ is $\qquad$   (A) 4 cm   (B) 8 cm   (C) 16 cm   (D) 10 cm   Ans:   KSEEB JUNE 2015   16 cm	1
3.	(A)	The distance of the point $P(x, y)$ from the origin is $\qquad$   (A) $\sqrt{x^{2}+y^{2}}$   (B) $x^{2}+y^{2}$   (C) $x^{2}-y^{2}$   (D) $\sqrt{x^{2}-y^{2}}$   Ans:   APRIL 2022 $\sqrt{x^{2}+y^{2}}$	1
4.	(C)	If a and $b$ are any two positive integers, then HCF $(a, b) \times \operatorname{LCM}(a, b)$ is equal to   (A) $a+b$   (B) $a-b$   (C) $a \times b$   (D) $a \div b$   Ans:   APRIL 2019 ax b	1
5.	(B)	If the polynomial $p(x)=x^{2}-x+1$ is divided by ( $x-2$ ) then the remainder is $\qquad$   (A) 2   (B) 3   (C) 0   (D) 1   Ans:   APRIL 2018 3	1


6	(D)	The sum and product of the roots of the quadratic equation $4 x^{2}+1=0$ are respectively.   (A) 1 and 4   (B) 0 and 1   (C) 0 and $-1 / 4$   (D) 0 and $1 / 4$   Ans:   JUNE 2008   0 and $1 / 4$	1
7.	(A)	Value of $3+\sec ^{2} \theta$ is $\qquad$   (A) $4+\tan ^{2} \boldsymbol{\theta}$   (B) $4+\overline{\cot ^{2} \boldsymbol{\theta}}$   (C) $2+\cot ^{2} \boldsymbol{\theta}$   (D) $3+\cot ^{2} \boldsymbol{\theta}$   Ans:   APRIL 2021 $4+\tan ^{2} \boldsymbol{\theta}$	1
8.	(B)	If the circumference of the base of a cylinder is 44 cm and height 20 cm , then its lateral surface area is $\qquad$   (A) $440 \mathrm{~cm}^{2}$   (B) $880 \mathrm{~cm}^{2}$   (C) $88 \mathrm{~cm}^{2}$   (D) $44 \mathrm{~cm}^{2}$   Ans:   JUNE 2013,10,7,6   $880 \mathrm{~cm}^{2}$	1

\begin{tabular}{|c|c|c|c|}
\hline Qn.Nos. \& Value Points \& \& Marks allotted \\
\hline II. \& Answer the following questions : \(8 \times 1=8\) \& \& \\
\hline 9. \& \begin{tabular}{l}
Find the \(9^{\text {th }}\) term from the end (towards the first term) of the A.P 5,9,13..... 185. \\
Ans:
\[
\begin{aligned}
\& \mathrm{a}=185, \mathrm{~d}=-4 \& 1=5 \\
\& \mathrm{a}_{9}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d} \\
\& \mathrm{a}_{9}=\mathrm{a}+(9-1)-4 \\
\& \mathrm{a}_{9}=185+8 \mathrm{x}-4 \\
\& =185-32 \\
\& \mathrm{a}_{9}=153
\end{aligned}
\]
\end{tabular} \& \(1 / 2\)

$1 / 2$ \& 1 <br>

\hline 10. \& | Find the sum of the first $\mathbf{3 0}$ multiples of 4. Ans: |
| :--- |
| The first 30 multiples of 4 are: $4,8,12, \ldots ., 120$ |
| Here, $a=4, n=30, d=4$ |
| We know, $\begin{aligned} & \mathrm{S}_{30}=\mathrm{n} / 2[2 \mathrm{a}+(\mathrm{n}-1) \times \mathrm{d}] \\ & \mathrm{S}_{30}=30 / 2[2(4)+(30-1) \times 4] \\ & \mathrm{S}_{30}=15[8+116] \\ & \mathrm{S}_{30}=1860 \end{aligned}$ | \& $1 / 2$

$1 / 2$ \& 1 <br>
\hline 11. \& If PS and PT are tangents from an external point $P$ such that $P S=10 \mathrm{~cm}$ and $\angle S P T=60^{\circ}$. Find the length of chord ST. \& \& 1 <br>
\hline
\end{tabular}

	Ans:   As tangents from external point are equal in $\therefore \mathrm{PT}=\mathrm{PS}$ isosceles A. $\angle \mathrm{PTS}=\angle \mathrm{PST}=(180 \circ-60 \circ) / 2=60^{\circ}$ equilateral. $=\mathrm{ST}$   length.   $\Rightarrow \mathrm{APST}$ is   $\Rightarrow \triangle \mathrm{PST}$ is   $\therefore \mathrm{PS}=\mathrm{PT}$   $\therefore \mathrm{ST}=10$	$1 / 2$ $1 / 2$	
12.	Find the area of a quadrant of a circle whose circumference is $\mathbf{2 2} \mathbf{~ c m}$. Ans:   Circumference of the circle, $\mathrm{C}=22 \mathrm{~cm}$ (given)   It should be noted that a quadrant of a circle is a sector which is making an angle of $90^{\circ}$.   Let the radius of the circle $=r$   As $\mathrm{C}=2 \pi \mathrm{r}=22$, $\mathrm{R}=22 / 2 \pi \mathrm{~cm}=7 / 2 \mathrm{~cm}$   $\therefore$ area of the quadrant $=\left(\theta / 360^{\circ}\right) \times \pi r^{2}$   Here, $\theta=90^{\circ}$ $\begin{aligned} & \text { So, } \mathrm{A}=\left(90^{\circ} / 360^{\circ}\right) \times \pi \mathrm{r}^{2} \mathrm{~cm}^{2} \\ & =(49 / 16) \pi \mathrm{cm}^{2} \\ & =77 / 8 \mathrm{~cm}^{2}=9.6 \mathrm{~cm}^{2} \end{aligned}$	$1 / 2$ $1 / 2$	1
13.	Find the distance of the point $P(2,3)$ from the $x$-axis. Ans:   We know that, $(x, y)=(2,3)$ is a point on the Cartesian plane in the first quadrant. $\mathrm{x}=$ Perpendicular distance from y -axis   $y=$ Perpendicular distance from $x$-axis   Therefore, the perpendicular distance from x -axis $=\mathrm{y}$ coordinate $=3$	$1 / 2$ $1 / 2$	1
14.	Express 3825 as a product of its prime factors:   Ans:   Given: 3825   Using the division of a number by prime numbers method, we can get the product of prime factors of 3825 .   Hence, $3825=3 \times 3 \times 5 \times 5 \times 17$ $=3^{2} \times 5^{2} \times 17$	$1 / 2$ $1 / 2$	1
15.	Two unbiased coins are tossed. What is the probability of getting at most one head?   Ans:   Here, $\mathrm{S}=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT})$.   Let $\mathrm{E}=$ event of getting at most one head.   $\therefore \mathrm{E}=\{\mathrm{TT}, \mathrm{HT}, \mathrm{TH}\}$.	1/2	1


	$\therefore \mathrm{P}(\mathrm{E})=\frac{n(\mathrm{E})}{n(\mathrm{~S})}=\frac{3}{4}$	$1 / 2$	
	If the area of the surface of sphere is $4 \pi \mathrm{~cm}$. Find the diameter of the   sphere.   Ans:	Surface area of sphere $=4 \pi$   $4 \pi r^{2}=4 \pi$   $\mathrm{r}=1$   $\therefore$ Diameter $=2 \mathrm{r}=2 \times 1=2 \mathrm{~cm}$	$1 / 2$


Qn.Nos.	Value Points		Marks Allotted
III.	Answer the following questions $\quad 2 \times 8=8$		
17.	In the given figure, if $\angle P Q R=\angle P R X$, then find ar $(\triangle P R X)$ : ar ( $\triangle \mathrm{PQR}$ ).   Ans:   In $\triangle \mathrm{PRX}$ and $\triangle \mathrm{PQR}$, we have   $\angle \mathrm{P}$ and   $\angle \mathrm{PQR}=\angle \mathrm{PRX}$.   $\triangle \mathrm{PRX} \sim \mathrm{PQR}$ (by AA similarity rule) $\Rightarrow \frac{\operatorname{ar}(\triangle P R X)}{\operatorname{ar}(\triangle P Q R)}=\frac{\mathrm{RX}^{2}}{\mathrm{QR}^{2}}=\left(\frac{9}{12}\right)^{2}=\left(\frac{3}{4}\right)^{2}=\frac{9}{16}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$	2
18.	On comparing the ratios $a_{1} / a_{2}, b_{1} / b_{2}$, and $c_{1} / c_{2}$, find out whether the $3 x+2 y$ $=5 ; 2 x-3 y=7$ are consistent, or inconsistent.   Ans:   (i) Given: $3 x+2 y=5$ or $3 x+2 y-5=0$   and $2 x-3 y=7$ or $2 x-3 y-7=0$   Comparing the above equations with $a_{1} x+b_{1} y+c_{1}=0$   And $\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$   We get, $\begin{aligned} & a_{1}=3, b_{1}=2, c_{1}=-5 \\ & a_{2}=2, b_{2}=-3, c_{2}=-7 \\ & a_{1} / a_{2}=3 / 2, b_{1} / b_{2}=2 /-3, c_{1} / c_{2}=-5 /-7=5 / 7 \end{aligned}$   Since, $a_{1} / a_{2} \neq b_{1} / b_{2}$ the lines intersect each other at a point and have only one possible solution.   Hence, the equations are consistent.	$\begin{aligned} & 1 / 2 \\ & \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$	2
19.	Draw a pair of tangents to a circle of radius 4.5 cm , which are inclined to each other at an angle of $45^{\circ}$.   Ans:   Angle between the two radii $=180^{\circ}-45^{0}=135^{\circ}$   Draw $\angle \mathrm{AOB}=135^{\circ}$,	$1 / 2$ $1 / 2$ $1 / 2$	2


	$\angle \mathrm{OAP}=90^{\circ}, \angle \mathrm{OBP}=90^{\circ}$   $\therefore \mathrm{PA}$ and PB are the required tangents.	1/2	
20.	Prove that $3+2 \sqrt{ } 5$ is irrational.   Ans:   Let $3+2 \sqrt{ } 5$ be a rational number.   Then the co-primes x and y of the given rational number where $(\mathrm{y} \neq 0)$ is such that: $3+2 \sqrt{ } 5=x / y$   Rearranging, we get, $\begin{aligned} & 2 \sqrt{ } 5=(x / y)-3 \\ & \sqrt{ } 5=1 / 2[(x / y)-3] \end{aligned}$   Since x and y are integers, thus, $1 / 2[(\mathrm{x} / \mathrm{y})-3]$ is a rational number.   Therefore, $\sqrt{5}$ is also a rational number. But this confronts the fact that $\sqrt{5}$ is irrational.   Thus, our assumption that $3+2 \sqrt{ } 5$ is a rational number is wrong.   Hence, $3+2 \sqrt{ } 5$ is irrational.   OR   Given that $\operatorname{HCF}(306,657)=9$, find $\operatorname{LCM}(306,657)$.   Ans:   As we know that,   $\mathrm{HCF} \times \mathrm{LCM}=$ Product of the two given numbers   Therefore, $\begin{aligned} & 9 \times \mathrm{LCM}=306 \times 657 \\ & \mathrm{LCM}=(306 \times 657) / 9=22338 \end{aligned}$   Hence, LCM $(306,657)=22338$	1/2	2
21.	If $(\alpha-\beta), \alpha,(\alpha+\beta)$ are zeroes of the polynomial $p(x)=2 x^{3}-16 x^{2}+15 x-2$, then find the value of $\alpha$. Ans: $\begin{aligned} & \text { Sum of zeroes }=-\quad \frac{\text { Coeff. of } x^{2}}{\text { Coeff. of } x^{3}} \\ & \Rightarrow(\alpha-\beta), \alpha,(\alpha+\beta)=\frac{-(16)}{2} \\ & \Rightarrow 3 \alpha=8 \\ & \Rightarrow \alpha=\frac{8}{3} . \end{aligned}$	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	2
22.	What is the discriminant of the equation $x^{2}-2 x+3=0$ ? Also, determine the number of solutions this equation has. Ans:		2

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
Given, \(\mathrm{x}^{2}-2 \mathrm{x}+3=0\) \\
In the equation,
\[
a=1 ; b=-2 ; c=3
\] \\
The formula for discriminant is,
\[
\begin{aligned}
\& \Delta=\mathrm{b}^{2}-4 \mathrm{ac} \\
\& \Rightarrow \Delta=(-2)^{2}-4(1)(3) \\
\& \Rightarrow \Delta=4-12 \\
\& \Delta=-8<0
\end{aligned}
\] \\
Since the value of the determinant is negative, the equation will have no real solutions. \\
OR \\
Find the roots of \(3 x^{2}-5 x+2=0\) by using the quadratic formula. \\
Ans:
\[
3 x^{2}-5 x+2=0
\] \\
Comparing equations with \(\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0\) \\
Here, \(a=3, b=-5, c=2\) \\
We know that,
\[
\begin{aligned}
\& \mathrm{D}=\mathrm{b}^{2}-4 a \mathrm{c} \\
\& \mathrm{D}=(-5)^{2}-4(3)(2) \\
\& \mathrm{D}=25-24 \\
\& \mathrm{D}=1
\end{aligned}
\] \\
So, the roots of the equation is given by
\[
\mathrm{x}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\] \\
putting values
\[
\begin{aligned}
\& x=\frac{-(-5) \pm \sqrt{1}}{2 \times 3} \\
\& x=\frac{5 \pm 1}{6}
\end{aligned}
\] \\
Solving
\[
\begin{array}{l|l}
x=\frac{5+1}{6} \& x=\frac{5-1}{6} \\
x=\frac{6}{6} \& x=\frac{4}{6} \\
x=1 \& x=\frac{2}{3}
\end{array}
\] \\
Hence, the roots of the equation are 1 and \(\frac{2}{3}\)
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)

$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$ \& <br>
\hline 23. \& If $\sin \theta+\cos \theta=\sqrt{ } 2$, then evaluate $\tan \theta+\cot \theta$ Ans:

$$
\begin{align*}
& \sin \theta+\cos \theta=\sqrt{ } 2 \\
& \Rightarrow(\sin \theta+\cos \theta)^{2}=(\sqrt{ } 2)^{2} \\
& \Rightarrow \sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta=2 \\
& \Rightarrow 1+2 \sin \theta \cos \theta=2 \\
& \Rightarrow \sin \theta \cos \theta=1 / 2 \ldots \ldots \ldots \text { (i) }  \tag{i}\\
& \text { we know, } \sin ^{2} \theta+\cos ^{2} \theta=1 \ldots \ldots \ldots \tag{ii}
\end{align*}
$$ \& $1 / 2$

$1 / 2$
$1 / 2$ \& 2 <br>
\hline
\end{tabular}

	Dividing (ii) by (i) wet get $\begin{aligned} & \frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin \theta \cos \theta}=\frac{1}{1 / 2} \Rightarrow \frac{\sin ^{2} \theta}{\sin \theta \cos \theta} \\ & \quad+\frac{\cos ^{2} \theta}{\sin \theta \cos \theta}=2 \\ & \Rightarrow \tan \theta+\cot \theta=2 \end{aligned}$	$1 / 2$ $1 / 2$	
24.	A box contains 90 dises which are numbered from 1 to 90 . If one disc is drawn at random from the box, find the probability that it bears   (i) a two-digit number   (ii) a perfect square numbers   Ans:   The total number of discs $=90$   $\mathrm{P}(\mathrm{E})=$ (Number of favourable outcomes/ Total number of outcomes)   (i) Total number of discs having two digit numbers $=81$   (Since 1 to 9 are single-digit numbers and so, total 2-digit numbers are $90-9=$ 81)   $\mathrm{P}($ bearing a two-digit number $)=81 / 90=9 / 10=0.9$   (ii) Total number of perfect square numbers $=9(1,4,9,16,25,36,49,64$ and   81)   $\mathrm{P}($ getting a perfect square number $)=9 / 90=1 / 10=0.1$	$\begin{aligned} & 1 / 2 \\ & \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$	2


Qn.Nos.	Value Points		Marks Allotted
IV.	Answer the following questions 3x9=27		
25.	Prove that "The lengths of tangents drawn from an external point to a circle are equal"   Ans:   Data: ' O " is the center of the circle PQ and PR are tangents. drawn from external point P .   To Prove: PQ = PR   Construction: Join OP, OQ and OR   Proof: In the figure $\begin{aligned} & \angle \mathrm{OQP}=\angle \mathrm{ORP}=90^{\circ}[\mathrm{OQ} \perp \mathrm{PQ}] \\ & \mathrm{OR} \perp \mathrm{PR} \\ & \mathrm{OQ}=\mathrm{OR}(\text { radii of same circle }) \\ & \mathrm{OP}=\mathrm{OP}(\text { common side }) \\ & \Delta \mathrm{OQP} \cong \Delta \mathrm{ORP}[\mathrm{RHS}] \\ & \therefore \mathrm{PQ}=\mathrm{PR}(\mathrm{C} . \mathrm{P} . \mathrm{CT}) \end{aligned}$   Note : If the theorem is proved as given in the test-book, give full marks	1/2	3



	Ans:   Let us mark various regions of given figure by $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{A}, \mathrm{B}, \mathrm{C} \& \mathrm{D}$ as shown below:   Area of semi-circle $\mathrm{PQR}=\frac{\pi}{2}\left(\frac{9}{2}\right)^{2}=\frac{81}{8} \pi \mathrm{~cm}^{2}$   Area of region $\mathrm{A}=\pi\left(\frac{9}{4}\right)^{2}=\frac{81}{16} \pi \mathrm{~cm}^{2}$   Area of region $(\mathrm{B}+\mathrm{C})=\pi\left(\frac{3}{2}\right)^{2}=\frac{9}{4} \pi \mathrm{~cm}^{2}$   Area of region $\mathrm{D}=\frac{\pi}{2}\left(\frac{3}{2}\right)^{2}=\frac{9}{8} \pi \mathrm{~cm}^{2}$   Area of shaded region $\begin{aligned} & =\left(\frac{81}{8} \pi-\frac{81}{16} \pi-\frac{9}{4} \pi+\frac{9}{8} \pi\right) \mathrm{cm}^{2} \\ & =\frac{63}{16} \pi \mathrm{~cm}^{2} \text { or } \frac{99}{8} \mathrm{~cm}^{2} \end{aligned}$	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	3
27.	Draw a triangle $P Q R$ such that $P Q=5 \mathrm{~cm}, \angle P=120^{\circ}$ and $P R=6 \mathrm{~cm}$. Construct another triangle whose sides are $\frac{3}{4}$ times the corresponding sides of $\triangle \mathrm{PQR}$.   Ans:   In $\triangle \mathrm{PQR}$, $\mathrm{PQ}=5 \mathrm{~cm}, \mathrm{PR}=6 \mathrm{~cm}, \angle \mathrm{P}=120^{\circ}$		3



## Ans:

From the given data, let us assume the mean as $\mathrm{A}=75.5$
$\mathrm{x}_{\mathrm{i}}=($ Upper limit + Lower limit $) / 2$
Class size (h) $=3$
Now, find the $u_{i}$ and $f_{i} u_{i}$ as follows:

Class   Interval	Number of   women(fi)	Mid   Point( $\left.\mathbf{x}_{1}\right)$	$\mathbf{U}_{\mathbf{1}}=\left(\mathbf{x}_{\mathbf{1}}-\right.$   $\mathbf{7 5 . 5} / \mathbf{h}$	Fiu1 $_{1}$
$65-68$	2	66.5	-3	-6
$68-71$	4	69.5	-2	-8
$71-74$	3	72.5	-1	-3
$74-77$	8	75.5	0	0
$77-80$	7	78.5	1	7
$80-83$	4	81.5	2	8
$83-86$	2	84.5	3	6
	Sum $\mathrm{f}_{\mathrm{i}}=30$			Sum $\mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}=4$

Mean $=\overline{\mathrm{x}}=\mathrm{A}+\mathrm{h} \sum \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}} / \sum \mathrm{f}_{\mathrm{i}}$
$=75.5+3 \times(4 / 30)$
$75.5+4 / 10$
$=75.5+0.4$
$=75.9$
Therefore, the mean heartbeats per minute for these women is 75.9

## OR

The following data gives the information on the observed lifetimes (in hours) of 225 electrical components:

Lifetime (in hours)	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$	$100-120$
Frequency	10	35	52	61	38	29

## Determine the modal lifetimes of the components

Ans:

Lifetime   (in hours)	$0-20$	$20-40$	$\mathbf{4 0 - 6 0}$	$\mathbf{6 0 - 8 0}$	$\mathbf{8 0 - 1 0 0}$	$100-120$
Frequency	10	35	$\mathbf{5 2}$	$\mathbf{6 1}$	$\mathbf{3 8}$	29
			$\mathbf{f 0}$	$\mathbf{f 1}$	$\mathbf{f 2}$	

From the data given as above we may observe that maximum class frequency is 61 belonging to class interval $60-80$.
So, modal class $=60-80$
Lower class limit (1) of modal class $=60$
Frequency $\left(\mathrm{f}_{1}\right)$ of modal class $=61$
Frequency $\left(\mathrm{f}_{0}\right)$ of class preceding the modal class $=52$
Frequency $\left(\mathrm{f}_{2}\right)$ of class succeeding the modal class $=38$
Class size (h) $=20$


	Here, the quotient $=x^{2}+x-6$ $\begin{aligned} & =x^{2}+3 x-2 x-6 \\ & =x(x+3)-2(x+3) \\ & =(x-2)(x+3) \end{aligned}$	1/2	3
	Evaluate $\left(1+\tan ^{2} \mathrm{~A} / 1+\cot ^{2} \mathrm{~A}\right)=(1-\tan \mathrm{A} / 1-\cot \mathrm{A})^{2}=\boldsymbol{\operatorname { t a n }}^{2} \mathrm{~A}$   Ans:   Given: $\left(1+\tan ^{2} \mathrm{~A} / 1+\cot ^{2} \mathrm{~A}\right)=(1-\tan \mathrm{A} / 1-\cot \mathrm{A})^{2}=\tan ^{2} \mathrm{~A}$   LHS:   $=\left(1+\tan ^{2} \mathrm{~A}\right) /\left(1+\cot ^{2} \mathrm{~A}\right)$   Using the trigonometric identities we know that $1+\tan ^{2} \mathrm{~A}=\sec ^{2} \mathrm{~A}$ and $1+\cot ^{2} \mathrm{~A}=$ $\operatorname{cosec}^{2} \mathrm{~A}$   $=\sec ^{2} \mathrm{~A} / \operatorname{cosec}^{2} \mathrm{~A}$   On taking the reciprocals we get   $=\sin ^{2} \mathrm{~A} / \cos ^{2} \mathrm{~A}$   $=\tan ^{2} \mathrm{~A}$   RHS:   $=(1-\tan \mathrm{A})^{2} /(1-\cot \mathrm{A})^{2}$   Substituting the reciprocal value of $\tan \mathrm{A}$ and $\cot \mathrm{A}$ we get, $=(1-\sin A / \cos A)^{2} /(1-\cos A / \sin A)^{2}$   $\left.=[(\cos \mathrm{A}-\sin \mathrm{A}) / \cos \mathrm{A}]^{2} /[(\sin \mathrm{A}-\cos ) / \sin \mathrm{A})^{2}\right]=\left[(\cos \mathrm{A}-\sin \mathrm{A})^{2} \times \sin ^{2} \mathrm{~A}\right] /\left[\cos ^{2} \mathrm{~A}\right.$.   $\left./(\sin \mathrm{A}-\cos \mathrm{A})^{2}\right]=\sin ^{2} \mathrm{~A} / \cos ^{2} \mathrm{~A}$   $=\tan ^{2} \mathrm{~A}$   The values of LHS and RHS are the same.   Hence proved.   OR   In triangle $A B C$, right angled at $B$, if $\tan A=\frac{1}{\sqrt{3}}$, find the value of $\sin A \cos C+\cos A \sin C$.   Ans:	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$	3


	Let ABC is a right triangle at B . $\begin{aligned} & \because \tan A=\frac{B C}{A B}=\frac{1}{\sqrt{3}} \\ & \therefore \frac{B C}{A B}=\frac{1}{\sqrt{3}} \end{aligned}$   Let $\mathrm{AB}=\sqrt{3} k$ and $\mathrm{BC}=k$   Then by Pythagoras' Theorem, we have: $\begin{aligned} \mathrm{AC}^{2} & =\mathrm{AB}^{2}+\mathrm{BC}^{2}=(\sqrt{3} k)^{2}+(k)^{2} \\ \Rightarrow \quad \mathrm{AC} & =\sqrt{4 k^{2}}=2 k \quad[\text { Hypotenuse }] \end{aligned}$   Now $\begin{aligned} & \sin \mathrm{A}=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{k}{2 k}=\frac{1}{2} \\ & \cos \mathrm{~A}=\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\sqrt{3} k}{2 k}=\frac{\sqrt{3}}{2} \\ & \sin \mathrm{C}=\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\sqrt{3 k}}{2 k}=\frac{\sqrt{3}}{2} \\ & \cos \mathrm{C}=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{k}{2 k}=\frac{1}{2} \end{aligned}$   (i) $\sin \mathrm{A} \cos \mathrm{C}+\cos \mathrm{A} \sin \mathrm{C}$ $\begin{aligned} & =\frac{1}{2} \times \frac{1}{2}+\frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} \\ & =\frac{1}{4}+\frac{3}{4}=\mathbf{1} \end{aligned}$	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	3
32.	A boy standing on a horizontal plane finds a bird flying at a distance of 100 $\mathbf{m}$ from him at an elevation of $\mathbf{3 0 0}$. A girl standing on the roof of $\mathbf{2 0} \mathbf{m}$ high building, finds the angle of elevation of the same bird to be 450. Both the boy and the girl are on opposite sides of the bird. Find the distance of the bird from the girls.   Ans:   The position of the boy is at point B of elevation $30^{\circ}$ and that of the girl is at point G of elevation $45^{\circ}$.   In $\triangle \mathrm{PQB}$ $\sin 30^{\circ}=\frac{P Q}{P B}$ $\begin{aligned} & =>\frac{1}{2}=\frac{P Q}{100} \\ & \Rightarrow>P Q=50 \mathrm{~m} \end{aligned}$   Now, $\mathrm{PS}=\mathrm{PQ}-\mathrm{SQ}$ $\begin{aligned} & =\mathrm{PQ}-\mathrm{GR} \\ & =(50-20) \mathrm{m} \\ & =30 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$ $1 / 2$	3



Qn.Nos.	Value Points		Marks Allotted
V.	Answer the following questions 4x4=16		
34.	If the ratio of the sum of first $n$ terms of two $\mathrm{A} . \mathrm{P} / \mathrm{s}$ is $(7 n+1):(4 n+27)$, find the ratio of their mth terms.   Ans:   Let $\mathrm{a}_{1}, \mathrm{~d}_{1} ; \mathrm{a}_{2} \mathrm{~d}_{2}$ be first term and common difference of two A.P.'s respectively.   Given: $\frac{\mathrm{S}_{n} \text { of Ist AP }}{\mathrm{S}_{n} \text { of IInd AP }}=\frac{7 n+1}{4 n+27}$ $\begin{align*} \Rightarrow & \frac{\frac{n}{2}\left[2 a_{1}+(n-1) d_{1}\right]}{\frac{n}{2}\left[2 a_{2}+(n-1) d_{2}\right]}=\frac{7 n+1}{4 n+27} \\ \Rightarrow & \frac{a_{1}+\frac{(n-1)}{2} d_{1}}{a_{2}+\frac{(n-1)}{2} d_{2}}=\frac{7 n+1}{4 n+27} \tag{1} \end{align*}$   For $m$ th term, we have $\begin{equation*} \frac{t_{m} \text { of Ist AP }}{t_{m} \text { of IInd AP }}=\frac{a_{1}+(m-1) d_{1}}{a_{2}+(m-1) d_{2}} \tag{2} \end{equation*}$   Compare LHS of (1) with RHS of (2) $\begin{array}{rlrl} \text { Put } & & \frac{n-1}{2} & =m-1 \\ \Rightarrow & & n-1 & =2 m-2 \\ \Rightarrow & n & =2 m-1 \end{array}$   Replace $n$ by $2 m-1$ in (1) we get $\frac{a_{1}+(m-1) d_{1}}{a_{2}+(m-1) d_{2}}=\frac{7(2 m-1)+1}{4(2 m-1)+27}=\frac{14 n-6}{8 m+23}$   $\therefore$ Required rate is $(14 n-6):(8 m+23)$   Hence, in 10 th week her savings will be ₹ 20.75 .   OR   The sum of four consecutive numbers in an $A P$ is $\mathbf{3 2}$ and the ratio of the product of the first and the last term to the product of two middle terms is 7:15. Find the numbers   Ans:   Let the reqd. numbers be $\alpha-3 \beta, \alpha-\beta, \alpha+\beta, \alpha+3 \beta, \alpha-3 \beta+\alpha-\beta+\alpha+\beta+\alpha$ $+3 \beta=32$ $4 \alpha=32$ $\alpha=8$	1/2	4

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \multicolumn{7}{|l|}{} \& \& $1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$

$1 / 2$ \& <br>

\hline 35. \& \multicolumn{7}{|l|}{| Draw the graph of $2 y=4 x-6 ; 2 x=y+3$ |
| :--- |
| Ans:$\begin{aligned} & 2 y=4 x-6 \\ \Rightarrow & y=2 x-3 \end{aligned}$$\begin{aligned} & 2 x=y+3 \\ \Rightarrow & y=2 x-3 \end{aligned}$$x$ 1 2 3 <br> $y$ -1 1 3$x$ 1 2 3 <br> $y$ -1 1 3$(-1,1),(2,1),(3,3)$$(1,-1),(2,1),(3,3)$ |
| For table construction |
| Drawing two lines by marking points |
| Marking point of intersection and writing values of x and y |
| Note : Any other points can be considered to get straight line |} \& \[

1+1
\] \& 1

1 \& 4 <br>

\hline \& \multicolumn{8}{|l|}{| Obtain all other zeroes of $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$, if two of its zeroes are $\sqrt{ }(5 / 3)$ and $-\sqrt{ }(5 / 3)$. |
| :--- |
| Ans: |} \& \& <br>

\hline
\end{tabular}



|  | $\therefore \quad$ Diameter $=2 \mathrm{R}=2(10.5)=21 \mathrm{~cm}$ |  |
| :--- | :--- | :--- | :--- |
| Surface area of metallic sphere $=4 \pi \mathrm{R}^{2}$ |  |  |
| $=4 \times \frac{22}{7} \times \frac{21}{2} \times \frac{21}{2}=\mathbf{1 3 8 6} \mathrm{cm}^{2}$ | $1 / 2$ |  |
|  |  | $1 / 2$ |


Qn.Nos.	Value Points		Marks Allotted	
VI	Answer the following questions $5 \times 1=5$			
38.	State and prove "Basic Proportionality Theorem"   Statement: If a line is drawn parallel to one side of a triangle and intersects the other two sides, then the other two sides are divided in the same ratio.   Data: ABC is a triangle; DE is a line parallel to BC and intersecting AB at D and AC   at E, i.e., DE \\|BC.   To Prove: $\frac{A D}{D B}=\frac{A E}{E C}$   Construction: Join C to D and B to E. Draw EN $\perp$ AB and $\mathrm{DM} \perp \mathrm{AC}$.   Proof:   Area of a triangle, $\mathrm{ADE}=1 / 2 \times \mathrm{AD} \times \mathrm{EN}$ Similarly, $\operatorname{Ar}(\mathrm{BDE})=1 / 2 \times \mathrm{DB} \times \mathrm{EN}$   $\operatorname{Ar}(\mathrm{ADE})=1 / 2 \times \mathrm{AE} \times \mathrm{DM}$   $\operatorname{Ar}(\mathrm{DEC})=1 / 2 \times \mathrm{EC} \times \mathrm{DM}$   Hence, $\begin{equation*} \frac{\operatorname{Ar}(A D E)}{A r(B D E)}=\frac{1 / 2 \times \mathrm{AD} \times \mathrm{EN}}{1 / 2 \times \mathrm{DB} \times \mathrm{EN}}=\frac{A D}{D B} \quad \ldots \ldots \tag{1} \end{equation*}$   Similarly, $\begin{equation*} \frac{A r(A D E)}{A r(D E C)}=\frac{1 / 2 \times \mathrm{AE} \times \mathrm{DM}}{1 / 2 \times \mathrm{EC} \times \mathrm{DM}}=\frac{A E}{E C} \tag{2} \end{equation*}$   Triangles DEC and BDE are on the same base, i.e., DE and between same parallels DE and BC.   Hence, $\operatorname{Ar}(\mathrm{BDE})=\operatorname{Ar}(\mathrm{DEC})$   From the above equations, we can say that $\frac{A D}{D B}=\frac{A E}{E C}$   Hence, proved.	$1 / 2$   $1 / 2$	5	

## KEY ANSWER MODEL OUESTION PAPER - 4

Qn.   Nos.	Ans. key	Value point	Marks Allotted
I		Multiple Choice Questions: 8X1 = 8	1
1	C	$\begin{aligned} & \text { HCF: }(12,21,15,)=3 \\ & \text { LCM: }(12,21,15)=2 \times 2 \times 3 \times 5 \times 7=420 \\ & (3,420) \end{aligned}$	
2	C	$\begin{aligned} & \mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d} \\ & \mathrm{a}_{18}-\mathrm{a}_{13}=85-60=25 \end{aligned}$	1
3	C	Since $\mathrm{DE} \mid \boldsymbol{\mathrm { BC }}, \mathrm{AD} / \mathrm{DB}=\mathrm{AE} / \mathrm{EC}=1.5 / 3=1 / \mathrm{EC}=\mathrm{EC}=2 \mathrm{~cm}$	1
4	C	Sum of the zeroes, $6=3 \mathrm{k} / 2, \mathrm{k}=12 / 3=4$	1
5	A	Mode $=3$ median -2 mean	1
6	C	$1 / 3 \pi \mathrm{~h}\left(\mathrm{r}_{1}{ }^{2}+\mathrm{r}_{2}^{2}+\mathrm{r}_{1} \mathrm{r}_{2}\right)$	1
7	D	$30^{0}$	1
8	D	9	1
II		Answer the following : $8 \times 1=8$   ( Direct answers, I mark should be given )	
9.		$\Theta=\pi \mathrm{r}^{2} / 4$	1
10.		Given positive integers $a$ and $b$ there exists unique integers $q$ and $r$ satisfying $a=b q+r(0 \leq r \leq b)$	1
11		$\begin{aligned} & \mathrm{P}(-2)=(-2)^{2}+\mathrm{k}(-2)+4=0 \\ & 4-2 \mathrm{k}+4=0 \\ & 2 \mathrm{k}=8 \\ & \mathrm{~K}=4 \end{aligned}$	1
12.		In a triangle if square of on side is equal to the sum of the squares of the other two sides then the angle opposite to the first side is a right angle.	1
13.		$\begin{aligned} & \operatorname{Cot} \mathrm{A}=1 / \sqrt{ } 3 \\ & \mathrm{~A}=60^{0} \end{aligned}$	1
14.		$\tan \mathrm{C}=\mathrm{opp} / \mathrm{adj}$	1





28.	We get $x^{2}+2 x(1 / 4)+(1 / 4)^{2}-(1 / 4)^{2}-2$ $(x+1 / 4)^{2}-(1 / 16+2)=0$   $(x+1 / 4)^{2}-(1+33 / 16=0$ $(x+1 / 4)^{2}-33 / 16=0$ $(x+1 / 4)^{2}= \pm \sqrt{33} / 4$   Thus roots are $x=\frac{-1+\sqrt{33}}{4}$ $\frac{-1-\sqrt{33}}{4}$   OR   The age of student A is 19 years   The age of student B is 15 years   After $x$ years their ages will 20 $\begin{aligned} & (x+19)(x+15)=480 \\ & X 2+15 x+19 x+285=480 \\ & X 2+34 x+285-480=0 \\ & X 2+34 x-195=0 \\ & X 2+39 x-5 x-195=0 \\ & X(x+39)-5(x+3)=0 \\ & X+39=x=-39 \\ & X-5=0 \\ & X=5 \end{aligned}$   Therefore After five years the product of the ages of student A and B will be 480   Let $\mathrm{p}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{Q}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ trisect AB .   Thus P divides AB in the ratio $1: 2$ and Q divides AB in the ratio 2 : 1 $\begin{aligned} & x=\frac{m x_{2}+n x_{1}}{m+n} \\ & y=\frac{m y_{2}+n y_{1}}{m+n} \\ & P\left(x_{1}, y_{1}\right)=\frac{1(-4)+2(2)}{2+1,} \end{aligned}$ $\frac{2(-6)+1(-3)}{2+1}$ $\frac{(-4+4)}{3}$ $\begin{aligned} & \frac{-6-(-6)}{3} \\ & =(0,-4) \\ & Q\left(x_{2}, y_{2}\right)=\frac{2(-4)+1(2)}{2+1,} \\ & \frac{2(-6)+1(-3)}{2+1} \\ & \frac{-8+2}{3} \end{aligned}$	3








